29 research outputs found

    The Water Solubility of Ursolic Acid Complexes at Different Choline Concentrations

    Get PDF
    https://scholarscompass.vcu.edu/uresposters/1409/thumbnail.jp

    Inhibition of P-Glycoprotein by HIV Protease Inhibitors Increases Intracellular Accumulation of Berberine in Murine and Human Macrophages

    Get PDF
    Background HIV protease inhibitor (PI)-induced inflammatory response in macrophages is a major risk factor for cardiovascular diseases. We have previously reported that berberine (BBR), a traditional herbal medicine, prevents HIV PI-induced inflammatory response through inhibiting endoplasmic reticulum (ER) stress in macrophages. We also found that HIV PIs significantly increased the intracellular concentrations of BBR in macrophages. However, the underlying mechanisms of HIV PI-induced BBR accumulation are unknown. This study examined the role of P-glycoprotein (P-gp) in HIV PI-mediated accumulation of BBR in macrophages. Methodology and Principal Findings Cultured mouse RAW264.7 macrophages, human THP-1-derived macrophages, Wild type MDCK (MDCK/WT) and human P-gp transfected (MDCK/P-gp) cells were used in this study. The intracellular concentration of BBR was determined by HPLC. The activity of P-gp was assessed by measuring digoxin and rhodamine 123 (Rh123) efflux. The interaction between P-gp and BBR or HIV PIs was predicated by Glide docking using Schrodinger program. The results indicate that P-gp contributed to the efflux of BBR in macrophages. HIV PIs significantly increased BBR concentrations in macrophages; however, BBR did not alter cellular HIV PI concentrations. Although HIV PIs did not affect P-gp expression, P-gp transport activities were significantly inhibited in HIV PI-treated macrophages. Furthermore, the molecular docking study suggests that both HIV PIs and BBR fit the binding pocket of P-gp, and HIV PIs may compete with BBR to bind P-gp. Conclusion and Significance HIV PIs increase the concentration of BBR by modulating the transport activity of P-gp in macrophages. Understanding the cellular mechanisms of potential drug-drug interactions is critical prior to applying successful combinational therapy in the clinic

    Peroxynitrite and 4-Hydroxynonenal Inactivate Breast Cancer Resistance Protein/ABCG2

    No full text
    Oxidative stress may arise from a variety of pathologies and results in the formation of toxic and reactive chemical species. Extensive research has been done to establish mechanisms of formation and cytotoxic effects of a number of different products of oxidation stress including peroxynitrite (PN) and 4-hydroxynonenal (4HNE). However, relatively few studies have investigated their effects on ATP-binding cassette (ABC) transporters. The objective of this investigation was to determine the effects of PN and 4HNE on BCRP/ABCG2. To eliminate the effect of metabolic enzymes, the experiments were carried out with inside-out Sf9 membrane vesicles overexpressing BCRP/ABCG2 using riboflavin as a substrate. The experiments revealed that PN produced IC50 of about 31.2 ± 2.7 μM, based upon initial concentrations. The IC50 for 4HNE was estimated to be 92 ± 1.4 μM. Preincubation of membrane vesicles with either PN or 4HNE caused the maximal rate of transport (Vmax) to drop drastically, up to 19 times, with no or much smaller effect on Km. Thus, PN and 4NE can inhibit BCRP transport activity

    Selectivity of Dietary Phenolics for Inhibition of Human Monoamine Oxidases A and B

    No full text
    Monoamine oxidases (MAOs) regulate local levels of neurotransmitters such as dopamine, norepinephrine, and serotonin and thus have been targeted by drugs for the treatment of certain CNS disorders. However, recent studies have shown that these enzymes are upregulated with age in nervous and cardiac tissues and may be involved in degeneration of these tissues, since their metabolic mechanism releases hydrogen peroxide leading to oxidative stress. Thus, targeting these enzymes may be a potential anti-aging strategy. The purpose of this study was to compare the MAO inhibition and selectivity of selected dietary phenolic compounds, using a previously validated assay that would avoid interference from the compounds. Kynuramine metabolism by human recombinant MAO-A and MAO-B leads to formation of 4-hydroxyquinoline, with Vmax values of 10.2±0.2 and 7.35±0.69 nmol/mg/min, respectively, and Km values of 23.1±0.8 μM and 18.0±2.3 μM, respectively. For oral dosing and interactions with the gastrointestinal tract, curcumin, guaiacol, isoeugenol, pterostilbene, resveratrol, and zingerone were tested at their highest expected luminal concentrations from an oral dose. Each of these significantly inhibited both enzymes except for zingerone, which only inhibited MAO-A. The IC50 values were determined, and selectivity indices (MAO-A/MAO-B IC50 ratios) were calculated. Resveratrol and isoeugenol were selective for MAO-A, with IC50 values of 0.313±0.008 and 3.72±0.20 μM and selectivity indices of 50.5 and 27.4, respectively. Pterostilbene was selective for MAO-B, with IC50 of 0.138±0.013 μM and selectivity index of 0.0103. The inhibition of resveratrol (MAO-A) and pterostilbene (MAO-B) was consistent with competitive time-independent mechanisms. Resveratrol 4’-glucoside was the only compound which inhibited MAO-A, but itself, resveratrol 3-glucoside, and pterostilbene 4’-glucoside failed to inhibit MAO-B. Additional studies are needed to establish the effects of these compounds on MAO-A and/or MAO-B in humans

    Binding of Lopinavir to Human α 1

    No full text

    Human Multidrug Resistance Protein 2 Transports the Therapeutic Bile Salt Tauroursodeoxycholate

    No full text

    BASOLATERAL ACTIVE UPTAKE OF NITROFURANTOIN IN THE CIT3 CELL CULTURE MODEL OF LACTATION: Fig. 1.

    No full text

    Pulchinenosides from Pulsatilla Chinensis Increase P-Glycoprotein Activity and Induce P-Glycoprotein Expression

    No full text
    Five pulchinenosides (pulchinenoside B3, pulchinenoside BD, pulchinenoside B7, pulchinenoside B10, and pulchinenoside B11) isolated from Pulsatilla chinensis (Bge) Regel saponins extract exhibited strong antitumor activities but poor gastrointestinal absorption properties. The enteric induction of P-glycoprotein (P-gp) is understood to restrict the oral bioavailability of some pharmaceutical compounds and lead to adverse drug reactions. Therefore, the present investigation was intended to delineate the impacts of pulchinenosides on cellular P-gp function and expression using Sf9 membrane vesicles and LS180 cells as a surrogate of human intestinal epithelial cells. Preliminary cytotoxic studies showed that 10 μM was an acceptable concentration for cytotoxicity and antiproliferation studies for all pulchinenosides using the alamarBlue assay. The cell cycle of LS180 cells detected by flow cytometry was not significantly influenced after 48 hours of coincubation with 10 μM of pulchinenosides. In the presence of pulchinenosides, the ATP-dependent transport of N-methyl-quinidine mediated by P-glycoprotein was stimulated significantly. The upregulation of P-glycoprotein and mRNA levels was found by Western blot and real-time PCR analysis in LS180 cells. Parallel changes indicate that all pulchinenosides are exposed to pulchinenosides-mediated transcriptional regulation. In conclusion, pulchinenosides could induce P-glycoprotein expression and directly increase its functional activity
    corecore