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Abstract

Background: HIV protease inhibitor (PI)-induced inflammatory response in macrophages is a major risk factor for
cardiovascular diseases. We have previously reported that berberine (BBR), a traditional herbal medicine, prevents HIV PI-
induced inflammatory response through inhibiting endoplasmic reticulum (ER) stress in macrophages. We also found that
HIV PIs significantly increased the intracellular concentrations of BBR in macrophages. However, the underlying mechanisms
of HIV PI-induced BBR accumulation are unknown. This study examined the role of P-glycoprotein (P-gp) in HIV PI-mediated
accumulation of BBR in macrophages.

Methodology and Principal Findings: Cultured mouse RAW264.7 macrophages, human THP-1-derived macrophages, Wild
type MDCK (MDCK/WT) and human P-gp transfected (MDCK/P-gp) cells were used in this study. The intracellular
concentration of BBR was determined by HPLC. The activity of P-gp was assessed by measuring digoxin and rhodamine 123
(Rh123) efflux. The interaction between P-gp and BBR or HIV PIs was predicated by Glide docking using Schrodinger
program. The results indicate that P-gp contributed to the efflux of BBR in macrophages. HIV PIs significantly increased BBR
concentrations in macrophages; however, BBR did not alter cellular HIV PI concentrations. Although HIV PIs did not affect P-
gp expression, P-gp transport activities were significantly inhibited in HIV PI-treated macrophages. Furthermore, the
molecular docking study suggests that both HIV PIs and BBR fit the binding pocket of P-gp, and HIV PIs may compete with
BBR to bind P-gp.

Conclusion and Significance: HIV PIs increase the concentration of BBR by modulating the transport activity of P-gp in
macrophages. Understanding the cellular mechanisms of potential drug-drug interactions is critical prior to applying
successful combinational therapy in the clinic.
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Introduction

Human immunodeficiency virus (HIV) protease inhibitors (PIs)

are the major components of highly active anti-retroviral therapy

(HAART) and have been successfully used to control disease

progression in HIV-1 patients. However, the decline in morbidity

and mortality has been clouded by the emergence of a number of

metabolic derangements [1]. The prevalence of dyslipidemia in

patients receiving HIV PIs is more than 50%, which significantly

increases the risk of cardiovascular disease (CVD) [2,3,4,5].

Although cellular/molecular mechanisms underlying HIV PI-

induced CVD remain to be fully elucidated, sufficient evidence

suggests that lipid accumulation, inflammation, and activation of

endoplasmic reticulum (ER) stress are all involved in HIV PI-

induced cardiovascular complications and metabolic syn-

dromes[3,4,5,6,7].

Berberine (BBR) is an alkaloid isolated from medicinal plants

such as Rhizoma coptidis and Phellodendron amurense. Although its

traditional use mainly focused in various infectious disorders for a

long time [8], the lipid-lowering, anti-diabetic and anti-inflamma-

tory activities were shown in many studies during past decades
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[9,10,11]. Several mechanisms including modulation of AMP-

dependent protein kinase (AMPK) activity and regulation of

tyrosine kinase, Akt and NF-kB signaling are identified to be

associated with the beneficial effects of berberine on improvement

of obesity-associated lipid dysregulation and inhibition of vascular

and intestinal inflammation [12,13,14,15]. Our previous study also

indicated that inhibition of ER stress by BBR represents a key

mechanism by which this molecule prevents the HIV PI-induced

inflammatory response [16]. Therefore, BBR is a promising

complementary agent which may be used with HIV PIs for the

treatment of HIV infection.

P-glycoprotein (P-gp) is the most widely investigated member of

ATP binding cassette (ABC) membrane efflux transporters and has

been identified as a major transporter responsible for the efflux of

BBR [17,18]. Similarly, most HIV PIs also have been described as

P-gp substrates at both the intestinal barrier and the blood-brain

barrier (BBB) [19,20,21]. It also has been reported that HIV PIs

act as both inhibitors [22] and occasionally inducers of P-gp

[23,24,25]. Therefore, HIV PIs may alter the pharmacokinetics of

P-gp substrates drugs on multiple levels [26,27].

Macrophages play a pivotal role in the initiation and

progression of atherosclerotic lesions. Our previous study demon-

strated that HIV PIs accumulate in macrophages and promote

foam cell formation, which is the core component of the

atherosclerotic plaque. Macrophages represent an important in

vitro model to screen potential complementary and alternative

medicines (CAMs) which may counteract HIV PI-induced

cardiovascular complications. Factors that affect accumulation of

these drugs into macrophages are therefore important to consider.

Concurrently, the expression of drug transporters deserves

attention. Recent studies have shown that P-gp is expressed in

both human and mouse macrophages [28,29] and it is likely to

influence accumulation of BBR and HIV PIs in macrophages.

However, the role of P-gp in the interaction between BBR and

HIV PIs has not been elucidated. In mouse J774A.1 macrophages,

we already observed a significant enhancement of BBR intracel-

lular accumulation induced by lopinavir (LOPV) [30]. Therefore,

our goal was to further explore the potential role of P-gp in HIV

PIs-induced increase of BBR accumulation in macrophages.

Functional expression of P-gp and a possible inhibitory mechanism

was also probed. The results presented herein indicate that P-gp is

involved in BBR efflux in macrophages. In addition, HIV PIs

increase BBR uptake by inhibiting the activity of P-gp in

macrophages. This study provided new important information

for future application of BBR in treatment of HIV PI-associated

complications in the clinic.

Materials and Methods

Materials
Amprenavir (AMPV), ritonavir (RITV), and LOPV were

obtained from NIH AIDS Research & Reference Reagent

Program. BBR, verapamil, haloperidol, MK571, bromosulfalein,

rhodamine 123 (Rh123), digoxin, and general reagents for High

Performance Liquid Chromatography (HPLC) were purchased

from Sigma (St. Louis, MO, USA). Cell culture medium and

supplement components were from Invitrogen (Carlsbad, CA,

USA).

Cell Culture and Treatment
RAW 264.7 mouse macrophages (ATCC, Rockville MD, USA)

was cultured in DMEM medium containing 10% heat-inactivated

fetal bovine serum (FBS), 100 U/mL penicillin and 100 mg/mL

streptomycin at 37uC with 5% CO2. THP-1 human monocytes

(ATCC, Rockville MD, USA) were maintained in RPMI Medium

1640 supplemented with 10% FBS, 100 U/ml penicillin, and

100 mg/ml streptomycin at 37uC with 5% CO2. THP-1 mono-

cytes were treated with PMA (100 ng/ml) for 5 days to facilitate

differentiation into macrophages. Wild-type and human P-gp-

transfected MDCK cells were kindly provided by Dr. Hongjian

Zhang, PharmaResources Co., Ltd., Shanghai, China. MDCK

cells were cultured in DMEM supplemented with 10% FBS,

penicillin (100 U/mL) and streptomycin (100 mg/mL). HIV PIs,

BBR, P-gp selective inhibitors and substrates were dissolved in

dimethyl sulfoxide (DMSO) and directly added into the culture

medium and incubated for different time periods.

Measurement of P-gp activities in macrophages
To evaluate the effect of HIV PIs on P-gp activities in

macrophages, RAW264.7 cells were treated with HIV PIs (5,

15, and 25 mM) and Rh123 (5 mM) or digoxin (1 mM) for 4 h.

After washing with ice-cold PBS for three times, cells were

harvested in 500 mL of 1% (v/v) Triton X-100 in PBS. A 5 mL

aliquot was used for measurement of protein concentration and

the remaining cell lysate was centrifuged at 14,000 rpm for 5 min

at 4uC. The amounts of Rh123 was determined using 96-well

fluorescence plate reader with excitation/emission wavelengths at

485/530 nm. Digoxin was determined by Liquid chromatogra-

phy–mass spectrometry (LC/MS). The total amounts of intracel-

lular Rh123 and digoxin were normalized to total protein

concentration.

Quantification of BBR using High Performance Liquid
Chromatography (HPLC) Assay

An Agilent 1200 Series HPLC system and a Beckman C18

reverse phase column (5 mm, 4.6 mm625 cm) were used to

quantify the BBR in cells. A mobile phase consisting of

acetonitrile/water (30/70, v/v) containing 0.08% formic acid

and 0.15% ammonium acetate was pumped through the column

at a speed of 1.0 mL/min. BBR was detected by UV absorbance

at a wavelength of 346 nm. Under these conditions, the retention

time of BBR was 7.9 min. The quantitative linear range was 12.5–

1600.0 ng/mL for BBR. Standard curves of BBR were construct-

ed using weighted linear regression of peak area ratio values of the

calibration standards. The correlation coefficient (R2) was 0.999.

Quantification of HIV PIs using HPLC Assay
An Agilent 1200 series HPLC system was used to quantify HIV

PIs (AMPV, RITV, and LOPV) concentrations in RAW264.7

macrophages according to the method as previously described

with some modifications [31]. Briefly, the process was carried out

on a Beckman C18 reverse phase column (5 mm, 4.6 mm625 cm).

The mobile phase, at the flow rate of 1.0 mL/min, consisted of

acetonitrile/water (52/48, v/v) containing 0.05 M KH2PO4

pH 3.0. The samples were extracted with acetonitrile with a ratio

of 40:60 (v/v) followed by centrifugation. The HIV PIs were

detected at a wavelength of 210 nm. Quantification was

performed by determining the HPLC peak areas monitored at

210 nm versus the nominal concentration of the analyte. The

retention time of AMPV, RITV, and LOPV were 7.1, 14.6 and

17.0 min, respectively. The quantitative linear range was 25.0–

5000 ng/mL for AMPV, 100–5000 ng/mL for RITV and LOPV.

The correlation coefficient (R2) of AMPV, RITV, and LOPV were

0.997, 0.999 and 0.999, respectively.

HIV Protease Inhibitors and Berberine
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Quantification of digoxin using LC/MS Assay
A Shimadzu 2010A liquid chromatograph-mass spectrometer

(Shimadzu, Kyoto, Japan) with an ESI source was utilized to

quantify intracellular digoxin. Separation was performed using a

Inertsil ODS-3 column (150 mm62.1 mm i.d., 5 mm, GL Science

Inc., Japan) fitted with a C18 guard column (4.6612.5 mm, 5 mm,

Agilent, USA) at 40uC. The mobile phase consisting of solvent A

(0.02% ammonium chloride in water) and solvent B (acetonitrile)

using the following gradient: 40–60% B (linear, 0.03 min), 60–

80% B (linear, 4.97 min), 80–99% B (linear, 0.03 min), 99% B

(1.97 min), 99–40% B (linear, 2.5 min) and 40% B (5.3 min) for

equilibration at a speed of 0.2 mL/min. In SIM mode negative

ions of digoxin and digitoxin (internal standard) were monitored at

m/z 815.20 and 799.30, respectively. Under these conditions, the

retention times of digoxin and digitoxin were 6.3 and 4.8 min,

respectively. The quantitative linear range was 1.0–50.0 ng/mL

for digoxin. The correlation coefficient (R2) was 0.999. Digoxin in

the cells was extracted using ethyl acetate as described previously

[16] and subjected to LC/MS analysis as above.

Molecular Docking
The structures of ligands including BBR, AMPV, RITV, and

LOPV were constructed and optimized under OPLS 2001 force

field within Maestro environment. The reported crystal structure

of MDR1A/P-gp (PDB code: 3G60) was chosen for the docking

template [16]. The protein and ligands were prepared with the

Protein Preparation Wizard in Maestro using default options:

bond orders were assigned, hydrogens were added, and water

molecules were deleted. P-gp was minimized with the OPLS 2001

force field. The ligands were then docked into P-gp flexibly using

Glide SP method with default settings.

RNA isolation and RT-PCR
Total cellular RNA was isolated after treatment using the

Promega SV Total RNA Isolation System. The first cDNA was

synthesized using the High-Capacity cDNA Archive Kit. RT-PCR

was performed as described previously [2]. Primer pairs used were

59-AGGGCATTTACTTCAAACTTGTC-39 and 59-CCTGT-

CTTGGTCATGTGGTC-39 for Abcb1a (NM_011076), 59-GT-

GCTTACTGTCTTCTTCTC-39 and 59-CAATGCTTGGC-

TCG TTATC-39 for Abcb1b (NM_011075), or 59-GTCG-

Figure 1. Effect of HIV PIs on BBR uptake in RAW264.7 mouse macrophages. Cells were treated with BBR (5 mM) with or without individual
HIV PIs (AMPV, RITV, or LOPV, 15 mM) for 5 min, 15 min, 1 h, 4 h, 12 h or 24 h. The intracellular concentrations of BBR and HIV PIs were determined by
HPLC analysis as described in ‘‘Methods’’ and normalized with total protein amount of viable cells. Data are means 6 S.D. of three sets of samples. A)
Time course of BBR uptake without or with individual HIV PIs; B) Time course of AMPV uptake without or with BBR; C) Time course of RITV uptake
without or with BBR; D) Time course of LOPV without or with BBR.
doi:10.1371/journal.pone.0054349.g001

HIV Protease Inhibitors and Berberine
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TGGATCTGA CGTGC-39 and 59- GATG CCTGCTTCAC-

CAC CTT-39 for GAPDH (BC145810) as an internal control. The

PCR products were confirmed by DNA gel electrophoresis and

DNA sequencing.

Western Blot Analysis
The membrane proteins and cytosol proteins were prepared

and used for western blot analysis as described previously [32].

The protein concentration was determined using Bio-Rad protein

assay reagent. The membrane protein (75 mg) or cytosol protein

(25 mg) was resolved on 8% SDS-polyacrylamide gels and

transferred to nitrocellulose membranes (BioRad, Hercules, CA,

USA). Membranes were blocked with 5% non-fat dry milk in Tris-

buffered saline (TBS) for 1 h at room temperature and incubated

with the polyclonal antibody to P-gp (C219) (1:300 dilution,

Abcam, Cambridge, MA, USA), or b-actin (1:500 dilution; Boster

Biological Technology, Wuhan, China) at 4uC for overnight.

Immunoreactive bands were detected using horse radish perox-

idase-conjugated secondary antibody and ChemiDoc XRS+ digital

imaging system (BioRad, Hercules, CA, USA).

Statistical analysis
All of experiments were repeated at least three times and the

results were expressed as mean 6 S.D. One-way ANOVA was

employed to analyze the differences between sets of data using

GraphPad Prism (GraphPad, San Diego, CA). A value of p,0.05

was considered statistically significant.

Results

Effect of HIV PIs on the intracellular accumulation of BBR
in macrophages

Intracellular BBR uptake studies were performed to evaluate

whether HIV PIs (AMPV, RITV and LOPV) affect BBR

Figure 2. Effect of HIV PIs on BBR uptake in macrophages. A. Intracellular BBR accumulation after exposure to AMPV, RITV, LOPV (5, 15 and
25 mM) for 4 h in RAW 264.7 macrophages. B. Intracellular BBR accumulation after exposure to AMPV, RITV, LOPV (2.5, 5 and 10 mM) for 72 h in RAW
264.7 macrophages. Cells were pretreated with different concentrations of individual HIV PIs for 72 h, then treated with BBR for 4 h. C. Intracellular
BBR accumulation after exposure to AMPV, RITV, LOPV (5, 15 and 25 mM) for 4 h in THP-1 macrophages. D. Intracellular BBR accumulation after
exposure to AMPV, RITV, LOPV (2.5, 5 and 10 mM) for 72 h in THP-1 macrophages. Cells were pretreated with different concentrations of individual
HIV PIs for 72 h, then treated with BBR for 4 h. The intracellular cellular BBR amount was determined by HPLC analysis as described in ‘‘Methods’’ and
normalized with total protein amount of viable cells. Data are means 6 S.D. of three sets of samples. * p,0.05, statistical significance of HIV PI-treated
group relative to vehicle control group.
doi:10.1371/journal.pone.0054349.g002

HIV Protease Inhibitors and Berberine
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accumulation in RAW264.7 macrophages. As shown in Fig. 1A, in

the absence of HIV PIs, the intracellular concentration of BBR

was relatively low. However, in the presence of HIV PIs, the

intracellular concentration of BBR was significantly increased. At

the 24 h time point, the intracellular BBR concentrations were

increased 3-fold, 6-fold and 10-fold, by AMPV, RITV and LOPV,

respectively. However, the intracellular concentrations of individ-

ual HIV PIs were not affected by BBR in macrophages (Fig. 1B–

D).

We further examined whether HIV PI-induced increase of BBR

accumulation in RAW macrophages was dose-dependent. Cells

were treated with BBR in the presence of different concentrations

of individual HIV PIs (0, 5, 15, and 25 mM) for 4 h. As shown in

Fig. 2A, AMPV, RITV and LOPV, increased BBR accumulation

by 5-fold, 9-fold and 14-fold compared to vehicle control at

25 mM, respectively. In parallel with these studies, extended

exposure (3 days) of RAW macrophages to HIV PIs (0, 2.5, 5, and

10 mM) also increased intracellular BBR accumulation by 2-fold,

6-fold and 9-fold compared to vehicle control at 10 mM AMPV,

RITV or LOPV, respectively (Fig. 2B). Similarly, intracellular

BBR concentration in human THP-1 macrophages was signifi-

cantly increased after acute and extended exposure to HIV PIs

(Fig. 2C, D).

Identification of P-gp as a major player in HIV PI-
mediated intracellular accumulation of BBR

To identify the potential drug transporters involved in efflux of

BBR in macrophages, the selective chemical inhibitors for P-gp

(verapamil and haloperidol) and multidrug resistance-associated

protein (MRP) (MK571 and bromosulfalein) were used. As shown

in Fig. 3, both verapamil and haloperidol significantly increased

uptake of BBR in RAW264.7 macrophages. However, MK571

and bromosulfalein had no effect. The expression of P-gp in

RAW264.7 macrophages was confirmed by RT-PCR using

specific primers for mouse Mdr1a (Abcb1a) and Mdr1b (Abcb1b).

Both Mdr1a and Mdr1b were expressed in RAW264.7 macro-

phages, but the expression level of Abcb1b was much higher than

that of Abcb1a (Online Fig. S1). Taken together, these results

indicate that P-gp is the major transporter involved in BBR efflux

in macrophages.

We further examined the effect of HIV PIs on P-gp transporter

expression and activity in macrophages. The P-gp protein

expression levels were determined by Western blot analysis. The

results indicated that HIV PIs and BBR had no effect on P-gp

protein expression (Online Fig. S2). Mouse macrophages were

treated with different concentrations of individual HIV PIs (0, 5,

15, and 25 mM) in the presence of Rh123 or digoxin for 4 h. The

intracellular concentrations of Rh123 and digoxin were deter-

mined as described in the Methods section. As shown in Fig. 4A

and B, HIV PIs dose-dependently increased the intracellular

Figure 3. Effect of P-gp and MRP inhibitors on BBR uptake in
RAW264.7 macrophages. RAW264.7 macrophages were treated with
BBR (5 mM) in the absence or presence of P-gp inhibitors, verapamil
(100 mM) and haloperidol (50 mM), or MRP inhibitors, MK571 (10 mM)
and bromosulfalein (80 mM) for 4 h. The intracellular concentrations of
BBR were determined as described in ‘‘Methods’’. Data are means 6 S.D.
of three sets of samples. *p,0.05, statistical significance of transporter
inhibitor-treated group relative to BBR group.
doi:10.1371/journal.pone.0054349.g003

Figure 4. Effect of HIV PIs on P-gp transporter activity in
RAW264.7 macrophages. A. Intracellular Rh123 accumulation after
exposure to AMPV, RITV, LOPV (5, 15 and 25 mM), and verapamil
(100 mM) for 4 h. B. Intracellular digoxin accumulation after exposure to
AMPV, RITV, LOPV (5, 15 and 25 mM), and verapamil (100 mM) for 4 h.
Data are means 6 S.D. of three sets of samples. * p,0.05, statistical
significance of HIV PI-treated group relative to vehicle control group.
doi:10.1371/journal.pone.0054349.g004

HIV Protease Inhibitors and Berberine
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Rh123 and digoxin amounts, indicating HIV PIs inhibited P-gp

activity. These results indicated that HIV PIs inhibited P-gp

activities to different extents, and the greatest inhibition was

observed with LOPV treatment, followed by RITV and AMPV.

In order to further define the role of P-gp in HIV PI-induced

intracellular accumulation of BBR, the wild type MDCK

(MDCK/WT) and human P-gp-transfected MDCK (MDCK/P-

gp) cell lines were used. The P-gp expression level in MDCK/WT

is minimal compared to that in MDCK/P-gp cells. As expected,

the intracellular concentration of BBR was significantly increased

both in wild type and P-gp-transfected MDCK cells in the

presence of increasing concentrations of individual HIV PIs

(Fig. 5A). However, the BBR concentrations in MDCK/P-gp cells

treated with HIV PIs and verapamil were still lower than those in

wild type MDCK cells, indicating the incomplete inhibition of

over-expressed P-gp by HIV PIs and verapamil in MDCK/P-gp

cells. As shown in Fig. 5B, the percentage of increase of

intracellular BBR concentration induced by verapamil and HIV

PIs (RITV and LOPV) in MDCK/P-gp cells was much higher

than that in MDCK wild type cells. These results do suggest that

Figure 5. Influence of HIV PIs on BBR uptake in MDCK cells. Wild-type MDCK and P-gp-transfected MDCK cells were treated with BBR (5 mM)
in the presence of different amount of individual HIV PIs (5, 15, and 25 mM) or verapamil (100 mM) for 4 h, respectively. The intracellular BBR amount
was measured by HPLC analysis as described in ‘‘Methods’’ and normalized with total protein amount of viable cells. Data are means 6 S.D. of three
sets of samples. * p,0.05 statistical significance of HIV PI-treated group relative to BBR group. A. Intracellular BBR concentration after exposure to
AMPV, RITV, LOPV, and verapamil for 4 h in MDCK/WT and MDCK/P-gp cells. B. Relative changes of intracellular BBR concentration compared to basal
levels after treatment with HIV PIs and verapamil for 4 h in MDCK/WT and MDCK/P-gp cells.
doi:10.1371/journal.pone.0054349.g005
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inhibition of P-gp activity may represent the major mechanism

underlying HIV PI-induced increase of intracellular accumulation

of BBR in macrophages.

Molecular Docking of BBR and HIV PIs to P-gp
Recently, the crystal structure of mouse MDR1a/P-gp (ABCB1)

was identified, which has 87% sequence identity to human P-gp, in

a drug-binding-competent state [16]. We therefore utilized the

mouse P-gp structure as a receptor to perform molecular docking

to test BBR and HIV PIs. The results suggest that BBR and HIV

PIs were capable of binding to the drug binding pocket, but at

different binding locations (Fig. 6). The binding site of BBR was

located in the ‘‘lower’’ part of binding pocket (Fig. 6C); while the

docked structure of LOPV occupied the whole ‘‘upper’’ part of the

binding pocket (Fig. 6D). In addition, the binding sites of RITV

and AMPV (Fig. 6E and F) were located at the ‘‘middle’’ part of

the pocket. This suggests that the binding of HIV PIs in the drug

binding pocket could competitively inhibit BBR from binding to

the deeper site of this internal cavity. But binding of BBR has no

effect on the binding of HIV PIs to their binding sites. In addition,

LOPV, RITV and AMPV docked with higher glide energy to the

binding pocket, compared to BBR. The ranking order of glide

energy is: LOPV(261.1 kcal/mol) .RITV(256.6 kcal/mol)

.AMPV (249.5 kcal/mol) .BBR (233.6 kcal/mol). These data

suggest that HIV PIs strongly bind to P-gp and prevent P-gp-

mediated efflux of BBR in macrophages.

Discussion

HIV PIs are core components of HAART for HIV infection.

CAMs have been extensively studied for use in HIV patients to

manage HAART-associated side effects and improve overall

physical health [33,34]. However, both HIV PIs and many CAMs

are reported to interact with drug transporters and metabolizing

enzymes [35,36]. As such, CAMs could potentially affect the

beneficial outcome of HAART or the components of HAART

could complicate the beneficial effects of CAMs. Limited studies

have been published related to interactions between CAMs and

anti-HIV drug regimens. Macrophages are the major target of

HIV infection and also play critical roles in inflammation and

cardiovascular diseases. We have previously shown that BBR

prevents HIV PI-induced inflammatory response through modu-

lating ER stress signaling pathways in macrophages and the

intracellular concentration of BBR is significantly increased by

HIV PIs (Fig. 1). However, the mechanism of HIV PI-induced

BBR accumulation within macrophages is not previously known

and was the focus of the current study.

Most of the recent studies regarding the role of BBR and HIV

PIs in regulating drug transporters were done in intestinal

epithelial cells, hepatocytes, or cancer cell lines

[17,18,23,37,38,39]. Consistent with previous studies in other cell

types, the accumulation of BBR was shown to be energy

dependent in macrophages [18,39], suggesting ABC-transporters

may be involved. It has been shown that P-gp mediates efflux of

BBR in Caco-2 cells [17]. However, little is known regarding the

expression and function of P-gp in macrophages. RT-PCR

analysis indicated that P-gp is highly expressed in RAW264.7

macrophages (online Fig. S1). Previous studies in the literature is

contradictory regarding the role of HIV PIs in the modulation of

drug transporters [22,23,25,40,41]. Some of studies state that HIV

PIs have a direct inhibitory effect on the activity of P-gp [22,40],

whereas others report an increase in P-gp activity with treatment

of HIV PIs [23,25,41]. Such discrepancies may be a result of

varying concentrations and duration of treatment with different

HIV PIs in different types of cells. In our studies, we did not

observe significant changes of P-gp expression after HIV PIs and

BBR treatment (online Fig. S2). By using selective substrates and

inhibitors, we were able to determine the effect of HIV PIs on P-gp

activities in macrophages. Transport of the prototypical P-gp

substrates Rh123 and digoxin in cell culture has been successfully

used to assess P-gp activity [42]. Rh123 and digoxin cell exclusion

studies in RAW264.7 macrophages showed that intracellular

concentrations of digoxin and Rh123 were significantly increased

in macrophages after exposure to various HIV PIs. In RAW264.7

macrophages the ranking order of inhibition of P-gp activity was

LOPV.RITV.AMPV. BBR accumulation was significantly

increased in macrophages after acute and extended exposure to

various HIV PIs. These findings suggest that the inhibitory effect

of HIV PIs on P-gp activity was unidirectional, unlike atazanavir,

which inhibits P-gp activity in short-term treatment and induces P-

gp activity in long-term treatment [37]. Similar to the findings in

mouse macrophages, HIV PIs also increased intracellular

concentration of BBR in human THP-1 macrophages wild type

MDCK cells and P-gp-transfected MDCK cells, with a rank order

of patency LOPV.RITV.AMPV. Moreover, a lower multiple of

the increase in BBR concentration after individual HIV PIs or

Verapamil treatment in MDCK cells was observed in wild type

Figure 6. Molecular docking of BBR and HIV PIs to mouse P-gp.
A and B: side and top view of the drug binding pocket of P-gp,
respectively. Most of the surface of binding pocket colored green is
hydrophobic and aromatic residues. C–F: The overall docking views of
BBR, AMPV, RITV, and LOPV in the binding pocket.
doi:10.1371/journal.pone.0054349.g006

HIV Protease Inhibitors and Berberine

PLOS ONE | www.plosone.org 7 January 2013 | Volume 8 | Issue 1 | e54349



MDCK cells (Fig. 5B), which may due to the lower levels of

endogenous P-gp expression. The P-gp expression level in wild

type MDCK cells is about 4% of that in P-gp-transfected MDCK

cells [43].

The molecular docking studies further suggest that the

inhibitory effect of individual HIV PIs on the P-gp transporter is

as follows: LOPV.RITV.AMPV. These results also suggest that

HIV PIs could competitively block the binding of BBR to its

binding site in P-gp, while BBR has no reverse effect on the

binding of HIV PIVs to their binding sites in P-gp. Taken

together, our studies suggest that HIV PIs increase BBR

concentrations mainly by inhibiting the activities of P-gp. It

should be noted that it has recently been reported that HIV PIs

are also inhibitors of breast cancer resistance protein (BCRP) and

multidrug resistance-associated protein1 (MRP1) [44,45,46].

However, the expression of BCRP in murine macrophages has

not been clearly identified and the role of MRPs and BCRP in the

accumulation of BBR increased by HIV PIs remains to be

established in our future study.

It has been long realized that the bioavailability of BBR is very

low in vivo [47]. Several possible mechanisms have been identified

for its poor bioavailability [17,48]. P-gp-mediated efflux represents

a major mechanism. Although inhibition of efflux of BBR by

coadministration of HIV PIs may intuitively cause concern for use

in clinic, this specific drug interaction may actually be beneficial to

improve the biological activities of BBR. We will examine the

effect of HIV PIs on bioavailability of BBR using an in vivo mouse

model and further define the interaction between BBR and HIV

PIs with other transporters in our future study.

In summary, drug interactions of BBR with HIV PIs mediated

by P-gp inhibition were suggested by in vitro studies using

macrophages. Although further in vivo investigations of possible

interactions are necessary, the current study provided valuable

information for understanding the underlying cellular mechanism

of BBR-HIV PIs interactions, which is critical to effectively

applying this combinational therapy in the clinic.

Supporting Information

Figure S1 Expression of P-gp in macrophages. Total

cellular RNA was isolated from RAW264.7 macrophages and

reverse transcribed into 1st cDNA. Specific primers for MDR1a/

P-gp (ABCB1a) and MDR1b/P-gp (ABCB1b) were used to run

PCR. The PCR products were analyzed by DNA electrophoresis

and confirmed by DNA sequencing. Representative image is

shown.

(PDF)

Figure S2 Effect of HIV PIs and BBR on P-gp expression
in RAW264.7 macrophages. Representative immunoblots

against P-gp and b-actin from the membrane and cytosol extracts

of RAW macrophages treated with individual HIV PIs (15 mM)

and BBR (5 mM) for 6 h are shown. Blot shows specific bands of P-

gp at ,170 kDa and b-actin was used as loading control.

(PDF)
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