11 research outputs found

    Morphology and Growth Kinetic Advantage of Quenched Twinned Dendrites in Al-Zn Alloys

    Get PDF
    Twinned dendrites appearing in an Al-26 wtpct Zn alloy have been quenched during growth using a specifically designed setup that is positioned on top of a directional solidification experiment. X-ray tomography performed at the Swiss Light Source (SLS-beamline TOMCAT) allowed us to reconstruct the 3D morphology of these structures and to confirm previous observations performed on single 2D sections (Henry et al., Metall Mater Trans A 35A:2495-2501, 2004; Salgado-Ordorica and Rappaz, Acta Mater 56:5708-5718, 2008). Further characterization of these quenched specimens led to a better description of the mechanisms involved in the in-plane and lateral growth propagation of twinned dendrites. These were then put into relation with the competition mechanisms taking place during simultaneous solidification of twinned and regular dendrite

    As-Cast Residual Stresses in an Aluminum Alloy AA6063 Billet: Neutron Diffraction Measurements and Finite Element Modeling

    Get PDF
    The presence of thermally induced residual stresses, created during the industrial direct chill (DC) casting process of aluminum alloys, can cause both significant safety concerns and the formation of defects during downstream processing. Although numerical models have been previously developed to compute these residual stresses, most of the computations have been validated only against measured surface distortions. Recently, the variation in residual elastic strains in the steady-state regime of casting has been measured as a function of radial position using neutron diffraction (ND) in an AA6063 grain-refined cylindrical billet. In the present study, these measurements are used to show that a well-designed thermomechanical finite element (FE) process model can reproduce relatively well the experimental results. A sensitivity analysis is then carried out to determine the relative effect of the various mechanical parameters when computing the as-cast residual stresses in a cylindrical billet. Two model parameters have been investigated: the temperature when the alloy starts to thermally contract and the plasticity behavior. It is shown that the mechanical properties at low temperatures have a much larger influence on the residual stresses than those at high temperatures

    3-D multi-scale modeling of deformation within the weld mushy zone

    No full text
    The deformation of the fusion weld mushy zone, as a critical factor in solidification cracking, has been simulated by combining a 3D multi-scale model of solidification and microstructure with a deformation model that includes the effects of solidification shrinkage, thermo-mechanical forces and restraining forces. This new model is then used to investigate the role of welding parameters on the deformation rate of micro liquid channels during Gas Tungsten Arc welding of AA6061. It is shown that the internal normal deformation rate due to solidification shrinkage and also the external normal deformation rate caused by external forces are both highest for the micro liquid channels at the center of the mushy zone where solidification cracks usually occur. Furthermore, the model shows that welding travel speed and welding current strongly influence the deformation rate of the weld mushy zone and consequently the solidification cracking susceptibility of the weld. The model can be also used to link micro-scale phenomena with the macro-scale characteristics of solidification cracking during welding.Applied Science, Faculty ofEngineering, School of (Okanagan)ReviewedFacult

    Different Methods for Determining Porosity of Gas Diffusion Layer using X-ray Microtomography

    No full text
    Gas diffusion layer (GDL) is a crucial component in polymer electrode membrane fuel cells. Being highly porous, this layer facilitates transport of species from the flow field to the reaction sites and vice versa. One of the main characteristics of GDLs is porosity, which has been measured using a number of different methods including 3D X-ray microtomography (μ XCT). Despite the extensive use of this technique in investigating the properties of GDLs, there are variations in the results since the surface of the three dimensional volume used to obtain the bulk porosity of GDLs is difficult to quantify. In this paper, a robust surface identification method, referred to as "Rolling Ball", is introduced to identify systematically the surface and hence porosity of GDLs from μ XCT datasets. In this method, the diameter of the GDL carbon fiber is used as the characteristic length in combination with a Distance Transform (DT) to robustly identify the surface topology. This method is then used to estimate porosity of four different samples of a highly porous GDL, SGL 25BA. The results between different samples show great consistency. A comparison with other methods is also performed, and variations in the bulk and in-plane porosity are observed. The main advantage of the proposed Rolling Ball method compared to prior methods used in the literature is that it uses the carbon fiber diameter to identify the surface results in a systematic fashion. This methodology can be easily applied to other highly porous media.Applied Science, Faculty ofEngineering, School of (Okanagan)ReviewedFacultyGraduat

    A 3D discrete-element model for simulating liquid feeding during dendritic solidification of steel

    No full text
    International audienceA 3D meso-scale discrete-element model has been developed to simulate fluid flow during dendritic solidification of steel. The model domain is a representative volume element consisting of a set of equiaxed dendritic grain envelopes along with extra-dendritic liquid channels, where the final grain shape is given by a Voronoi tessellation. Solidification of each grain is simulated via a volume average approach. The output of the solidification simulation at a given solid fraction is used as the input mesh for the fluid flow simulation. A single domain Darcy-Brinkman model is used to calculate the pressure field within the liquid channels, with Poiseuille flow assumed to occur in the extra-dendritic region, and Darcy flow assumed to occur within the dendrite envelope. Mass conservation over each element is then used to derive a flow equation that is solved via the finite element method. The results of this new model are first compared with a previously-developed granular model [1] where fluid flow only occurs between the grains, and then compared with different forms of the Carman-Kozeny equation. It is shown that the intra-dendritic liquid fluid flow plays a major role in the semi- solid pressure field, and thus needs to be included when investigating hot tearing susceptibility in engineering alloys undergoing dendritic solidification

    Microscale X-ray tomographic investigation of the interfacial morphology between the CL and MPL in PEMFCs

    No full text
    The interfacial morphology between the catalyst layer (CL) and micro porous layer (MPL) influences the properties and performance of proton exchange membrane fuel cells (PEMFCs). Here we report a direct method to investigate the CL-MPL interfacial morphology of stacked and compressed gas diffusion layer (GDL with MPL)-catalyst coated membrane (CCM) assemblies. The area, origin and dimensions of interfacial gaps are studied with high-resolution X-ray micro computed tomography (X-μCT). The interfacial gap area (fraction of the CL-MPL interface separated by gaps) is higher for GDL-CCM assemblies with large differences in the surface roughness between the CL and MPL but reduces with increasing compression and with increased similarity in roughness. Relatively large continuous gaps are found in proximity to cracks in the MPL. These are hypothesized to form due to the presence of large pores on the surface of the GDL. Relatively small gaps are induced by the surface roughness features throughout the CL-MPL interface. From the results, smaller pores on the GDL surface serving as substrate for the MPL could reduce the number of MPL crack-induced gaps. Moreover, adjusting the CL and MPL surface roughness parameters to achieve similar orders of roughness can improve the surface mating characteristics of these two critical fuel cell components.Applied Science, Faculty ofEngineering, School of (Okanagan)ReviewedFacult

    Evolution of a mushy zone in a static temperature gradient using a volume average approach

    No full text
    International audienceA volume average model to study the transition of a semi-solid mushy zone to a planar solid/liquid interface in a static temperature gradient is presented. This model simulates the principal phenomena governing mushy zone dynamics including solute diffusion in the interdendritic and bulk liquids, migration of both the solid-liquid interface and the mushy-liquid boundary at the bottom and top of the mushy zone, and solidification. The motion of the solid-liquid interface is determined analytically by performing a microscopic solute balance between the solid and mushy zones. The motion of the mushy-liquid boundary is more complex as it consists of a transition between the mushy and bulk liquid zones with rapidly changing macroscopic properties. In order to simulate this motion, a control volume characterized by continuity in the solute concentration and a jump in both the liquid fraction and the solute concentration gradient was developed. The volume average model has been validated by comparison against prior in-situ X-ray radiography measurements [1], and phase-field simulations [2] of the mushy-to-planar transition in an Al-Cu alloy. A very good similarity was achieved between the observed experimental and phase-field dynamics with this new model even though the described system was only one-dimensional. However , an augmentation of the solute diffusion coefficient in the bulk liquid was required in order to mimic the convective solute transport occurring in the in situ X-ray study. This new model will be useful for simulating a wide range of natural and engineering processes

    Nondestructive cryomicro-CT imaging enables structural and molecular analysis of human lung tissue

    No full text
    Micro-computed tomography (CT) enables three-dimensional (3D) imaging of complex soft tissue structures, but current protocols used to achieve this goal preclude cellular and molecular phenotyping of the tissue. Here we describe a radiolucent cryostage that permits micro-CT imaging of unfixed frozen human lung samples at an isotropic voxel size of (11 µm)(3) under conditions where the sample is maintained frozen at -30°C during imaging. The cryostage was tested for thermal stability to maintain samples frozen up to 8 h. This report describes the methods used to choose the materials required for cryostage construction and demonstrates that whole genome mRNA integrity and expression are not compromised by exposure to micro-CT radiation and that the tissue can be used for immunohistochemistry. The new cryostage provides a novel method enabling integration of 3D tissue structure with cellular and molecular analysis to facilitate the identification of molecular determinants of disease.status: publishe

    Study of Hot Tearing During Steel Solidification Through Ingot Punching Test and Its Numerical Simulation

    No full text
    International audienceExperimental and numerical studies of hot tearing formation in steel are reported. On the one hand, an ingot punching test is presented. It consists in the application of a deformation at the surface of a solidifying 450 kg steel ingot. The experimental parameters are the displacement of the pressing tool, together with its velocity, leading to variations of a global strain rate. On the other hand, three-dimensional finite element thermomechanical modeling of the test is used. The time evolution of the strain tensor serves to compute an index to evaluate the susceptibility to create hot tears. It is based on the integration of a hot tearing criterion (HTC) that compares the local accumulation of strain with the expression of a critical value proposed in the literature. The main variable of the criterion is the brittleness temperature range (BTR) that refers to the solidification interval during which strain accumulates and creates hot cracks or tears. Detailed comparison of the simulation results with the measurements reveals the importance of the BTR for the prediction as well as excellent capabilities of the HTC to predict the formation of hot tears
    corecore