237 research outputs found
Electrical stimulation of the nucleus basalis of meynert:a systematic review of preclinical and clinical data
Deep brain stimulation (DBS) of the nucleus basalis of Meynert (NBM) has been clinically investigated in Alzheimer's disease (AD) and Lewy body dementia (LBD). However, the clinical effects are highly variable, which questions the suggested basic principles underlying these clinical trials. Therefore, preclinical and clinical data on the design of NBM stimulation experiments and its effects on behavioral and neurophysiological aspects are systematically reviewed here. Animal studies have shown that electrical stimulation of the NBM enhanced cognition, increased the release of acetylcholine, enhanced cerebral blood flow, released several neuroprotective factors, and facilitates plasticity of cortical and subcortical receptive fields. However, the translation of these outcomes to current clinical practice is hampered by the fact that mainly animals with an intact NBM were used, whereas most animals were stimulated unilaterally, with different stimulation paradigms for only restricted timeframes. Future animal research has to refine the NBM stimulation methods, using partially lesioned NBM nuclei, to better resemble the clinical situation in AD, and LBD. More preclinical data on the effect of stimulation of lesioned NBM should be present, before DBS of the NBM in human is explored further
Схеми скорочення необхідного об'єму вимірювань у методі контролю стаціонарної підйомної установки
Предлагается последовательная процедура принятия решения относительно вектора характеристик контролируемой стационарной подъемной установки, которая является некоторым обобщением процедуры Вальда и позволяет получить выигрыш в среднем объеме испытаний, аналогичный обычному «вальдовскому» выигрышу для случая двух гипотез. Предлагаемая последовательная процедура позволяет учитывать дополнительную информацию и за счет этого получить добавочный выигрыш в объеме контроля стационарной подъемной установки.Offers a consistent decision-making procedure for the vector characteristics of the controlled stationary hoist, which is a generalization of Wald's procedure and provides a gain in the average volume of tests, similar to the usual "of Wald's" winning the case of two hypotheses. The proposed sequential procedure takes into account the additional information
and thereby obtain additional gains in the amount of control a stationary hoist
Using Intratumor Heterogeneity of Immunohistochemistry Biomarkers to Classify Laryngeal and Hypopharyngeal Tumors Based on Histologic Features
Haralick texture features are used to quantify the spatial distribution of signal intensities within an image. In this study, the heterogeneity of proliferation (Ki-67 expression) and immune cells (CD45 expression) within tumors was quantified and used to classify histologic characteristics of larynx and hypopharynx carcinomas. Of 21 laryngectomy specimens, 74 whole-mount tumor slides were scored on histologic characteristics. Ki-67 and CD45 immunohistochemistry was performed, and all sections were digitized. The tumor area was annotated in QuPath. Haralick features independent of the diaminobenzidine intensity were extracted from the isolated diaminobenzidine signal to quantify intratumor heterogeneity. Haralick features from both Ki-67 and CD45 were used as input for a principal component analysis. A linear support vector machine was fitted to the first 4 principal components for classification and validated with a leave-one-patient-out cross-validation method. Significant differences in individual Haralick features were found between cohesive and noncohesive tumors for CD45 (angular second motion: P =.03, inverse difference moment: P =.009, and entropy: P =.02) and between the larynx and hypopharynx tumors for both CD45 (angular second motion: P =.03, inverse difference moment: P =.007, and entropy: P =.005) and Ki-67 (correlation: P =.003). Therefore, these features were used for classification. The linear classifier resulted in a classification accuracy of 85% for site of origin and 81% for growth pattern. A leave-one-patient-out cross-validation resulted in an error rate of 0.27 and 0.35 for both classifiers, respectively. In conclusion, we show a method to quantify intratumor heterogeneity of immunohistochemistry biomarkers using Haralick features. This study also shows the feasibility of using these features to classify tumors by histologic characteristics. The classifiers created in this study are a proof of concept because more data are needed to create robust classifiers, but the method shows potential for automated tumor classification.</p
17 α
17α-Ethynyl-androst-5-ene-3β,7β,17β-triol (HE3286) is a synthetic androstenetriol in Phase II clinical development for the treatment of inflammatory diseases. HE3286 was evaluated for blood-brain barrier (BBB) permeability in mice, and efficacy in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) murine model of Parkinson's disease (PD). We found that HE3286 freely penetrated the BBB. HE3286 treatment significantly improved motor function compared to vehicle in the rotarod test (mean 58.2 sec versus 90.9 sec, P < 0.0001), and reduced inflammatory mediator gene expression in the brain (inducible nitric oxide synthase, 20%, P = 0.002; tumor necrosis factor α, 40%, P = 0.038, and interleukin-1β, 33%, P = 0.02) measured by reverse-transcriptase polymerase chain reaction. Brain tissue histopathology and immunohistochemistry showed that HE3286 treatment increased the numbers of tyrosine hydroxylase-positive cells by 17% compared to vehicle (P = 0.003), and decreased the numbers of damaged neurons by 38% relative to vehicle (P = 0.029). L-3,4-dihydroxyphenylalanine (L-DOPA) efficacy was not enhanced by concurrent administration of HE3286. HE3286 administration prior to MPTP did not enhance efficacy. Our data suggest a potential role for HE3286 in PD treatment, and provides incentive for further investigation
Correlation and colocalization of HIF-1a and pimonidazole staining for hypoxia in laryngeal squamous cell carcinomas:A digital, single-cell-based analysis
OBJECTIVE: Tumor hypoxia results in worse local control and patient survival. We performed a digital, single-cell-based analysis to compare two biomarkers for hypoxia (hypoxia-inducible factor 1-alpha [HIF-1α] and pimonidazole [PIMO]) and their effect on outcome in laryngeal cancer patients treated with accelerated radiotherapy with or without carbogen breathing and nicotinamide (AR versus ARCON). MATERIALS AND METHODS: Immunohistochemical staining was performed for HIF-1α and PIMO in consecutive sections of 44 laryngeal cancer patients randomized between AR and ARCON. HIF-1α expression and PIMO-binding were correlated using digital image analysis in QuPath. High-density areas for each biomarker were automatically annotated and staining overlap was analyzed. Kaplan-Meier survival analyses for local control, regional control and disease-free survival were performed to predict a response benefit of ARCON over AR alone for each biomarker. RESULTS: 106 Tissue fragments of 44 patients were analyzed. A weak, significant positive correlation was observed between HIF-1α and PIMO positivity on fragment level, but not on patient level. A moderate strength correlation (r = 0.705, p < 0.001) was observed between the number of high-density staining areas for both biomarkers. Staining overlap was poor. HIF-1α expression, PIMO-binding or a combination could not predict a response benefit of ARCON over AR. CONCLUSION: Digital image analysis to compare positive cell fractions and staining overlap between two hypoxia biomarkers using open-source software is feasible. Our results highlight that there are distinct differences between HIF-1α and PIMO as hypoxia biomarkers and therefore suggest co-existence of different forms of hypoxia within a single tumor
Physics of IED Blast Shock Tube Simulations for mTBI Research
Shock tube experiments and simulations are conducted with a spherical gelatin filled skull–brain surrogate, in order to study the mechanisms leading to blast induced mild traumatic brain injury. A shock tube including sensor system is optimized to simulate realistic improvised explosive device blast profiles obtained from full scale field tests. The response of the skull–brain surrogate is monitored using pressure and strain measurements. Fluid–structure interaction is modeled using a combination of computational fluid dynamics (CFD) simulations for the air blast, and a finite element model for the structural response. The results help to understand the physics of wave propagation, from air blast into the skull–brain. The presence of openings on the skull and its orientation does have a strong effect on the internal pressure. A parameter study reveals that when there is an opening in the skull, the skull gives little protection and the internal pressure is fairly independent on the skull stiffness; the gelatin shear stiffness has little effect on the internal pressure. Simulations show that the presence of pressure sensors in the gelatin hardly disturbs the pressure field
Association of histological features with laryngeal squamous cell carcinoma recurrences:a population-based study of 1502 patients in the Netherlands
BACKGROUND: Recurrences remain an important problem in laryngeal squamous cell carcinoma. Little has been described about histological characteristics of the primary laryngeal tumor that may be associated with recurrences. Identifying risk factors for recurrences might help in adapting treatment or follow-up. Using real-life population-based data, we aimed to identify histological features of the primary tumor associated with recurrences and overall survival. MATERIAL AND METHODS: Demographic, clinical and treatment information on all first primary invasive laryngeal tumors diagnosed in 2010–2014 (N = 3705) were extracted from the population-based nationwide Netherlands cancer registry (NCR) and linked to PALGA, the nationwide Dutch pathology registry, to obtain data on histological factors and recurrences. For a random 1502 patients histological information i.e., keratinization, perineural invasion (PNI+), vascular invasion (VI+), growth pattern, degree of differentiation, extracapsular spread (ECS+), cartilage- and bone invasion and extralaryngeal extension, was manually extracted from narrative pathology reports and analyzed for locoregional recurrence and overall survival using cox regression analysis. RESULTS: In total, 299 patients developed a locoregional recurrence and 555 patients died. Keratinization (HR = 0.96 (95%CI: 0.68–1.34) p = 0.79), two or three adverse characteristics (PNI+, VI+, non-cohesive growth) (HR = 1.38 (95% CI: 0.63–3.01) p = 0.42), and ECS+ (HR = 1.38 (95% CI: 0.48–4.02) p = 0.55) were not associated to recurrence. For death, also no significant association was found. CONCLUSION: In this population-based real-life dataset on laryngeal carcinoma in the Netherlands, histological factors were not associated with locoregional recurrences or overall survival, but future studies should investigate the role of these features in treatment decisions. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12885-022-09533-0
Multi-modal volumetric concept activation to explain detection and classification of metastatic prostate cancer on PSMA-PET/CT
Explainable artificial intelligence (XAI) is increasingly used to analyze the
behavior of neural networks. Concept activation uses human-interpretable
concepts to explain neural network behavior. This study aimed at assessing the
feasibility of regression concept activation to explain detection and
classification of multi-modal volumetric data.
Proof-of-concept was demonstrated in metastatic prostate cancer patients
imaged with positron emission tomography/computed tomography (PET/CT).
Multi-modal volumetric concept activation was used to provide global and local
explanations.
Sensitivity was 80% at 1.78 false positive per patient. Global explanations
showed that detection focused on CT for anatomical location and on PET for its
confidence in the detection. Local explanations showed promise to aid in
distinguishing true positives from false positives. Hence, this study
demonstrated feasibility to explain detection and classification of multi-modal
volumetric data using regression concept activation.Comment: Accepted as: Kraaijveld, R.C.J., Philippens, M.E.P., Eppinga, W.S.C.,
J\"urgenliemk-Schulz, I.M., Gilhuijs, K.G.A., Kroon, P.S., van der Velden,
B.H.M. "Multi-modal volumetric concept activation to explain detection and
classification of metastatic prostate cancer on PSMA-PET/CT." MICCAI workshop
on Interpretability of Machine Intelligence in Medical Image Computing
(iMIMIC), 202
Using Intratumor Heterogeneity of Immunohistochemistry Biomarkers to Classify Laryngeal and Hypopharyngeal Tumors Based on Histologic Features
Haralick texture features are used to quantify the spatial distribution of signal intensities within an image. In this study, the heterogeneity of proliferation (Ki-67 expression) and immune cells (CD45 expression) within tumors was quantified and used to classify histologic characteristics of larynx and hypopharynx carcinomas. Of 21 laryngectomy specimens, 74 whole-mount tumor slides were scored on histologic characteristics. Ki-67 and CD45 immunohistochemistry was performed, and all sections were digitized. The tumor area was annotated in QuPath. Haralick features independent of the diaminobenzidine intensity were extracted from the isolated diaminobenzidine signal to quantify intratumor heterogeneity. Haralick features from both Ki-67 and CD45 were used as input for a principal component analysis. A linear support vector machine was fitted to the first 4 principal components for classification and validated with a leave-one-patient-out cross-validation method. Significant differences in individual Haralick features were found between cohesive and noncohesive tumors for CD45 (angular second motion: P =.03, inverse difference moment: P =.009, and entropy: P =.02) and between the larynx and hypopharynx tumors for both CD45 (angular second motion: P =.03, inverse difference moment: P =.007, and entropy: P =.005) and Ki-67 (correlation: P =.003). Therefore, these features were used for classification. The linear classifier resulted in a classification accuracy of 85% for site of origin and 81% for growth pattern. A leave-one-patient-out cross-validation resulted in an error rate of 0.27 and 0.35 for both classifiers, respectively. In conclusion, we show a method to quantify intratumor heterogeneity of immunohistochemistry biomarkers using Haralick features. This study also shows the feasibility of using these features to classify tumors by histologic characteristics. The classifiers created in this study are a proof of concept because more data are needed to create robust classifiers, but the method shows potential for automated tumor classification
Redefining radiotherapy for early-stage breast cancer with single dose ablative treatment: a study protocol
Contains fulltext :
181789.pdf (publisher's version ) (Open Access
- …