21 research outputs found

    Cavity-Controlled Collective Scattering at the Recoil Limit

    Full text link
    We study collective scattering with Bose-Einstein condensates interacting with a high-finesse ring cavity. The condensate scatters the light of a transverse pump beam superradiantly into modes which, in contrast to previous experiments, are not determined by the geometrical shape of the condensate, but specified by a resonant cavity mode. Moreover, since the recoil-shifted frequency of the scattered light depends on the initial momentum of the scattered fraction of the condensate, we show that it is possible to employ the good resolution of the cavity as a filter selecting particular quantized momentum states.Comment: 4 pages, 4 figure

    Spatial and temporal localization of light in two dimensions

    Full text link
    Quasi-resonant scattering of light in two dimensions can be described either as a scalar or as a vectorial electromagnetic wave. Performing a scaling analysis we observe in both cases long lived modes, yet only the scalar case exhibits Anderson localized modes together with extremely long mode lifetimes. We show that the localization length of these modes is influenced only by their position, and not their lifetime. Investigating the reasons for the absence of localization, it appears that both the coupling of several polarizations and the presence of near-field terms are able to prevent long lifetimes and Anderson localization.Comment: 5 pages, 4 figures and Supplementary Informatio

    Synchronization of Bloch oscillations by a ring cavity

    Get PDF
    We consider Bloch oscillations of ultracold atoms stored in a one-dimensional vertical optical lattice and simultaneously interacting with a unidirectionally pumped optical ring cavity whose vertical arm is collinear with the optical lattice. We find that the feedback provided by the cavity field on the atomic motion synchronizes Bloch oscillations via a mode-locking mechanism, steering the atoms to the lowest Bloch band. It also stabilizes Bloch oscillations against noise, and even suppresses dephasing due to atom-atom interactions. Furthermore, it generates periodic bursts of light emitted into the counter-propagating cavity mode, providing a non-destructive monitor of the atomic dynamics. All these features may be crucial for future improvements of the design of atomic gravimeters based on recording Bloch oscillations.Comment: 14 pages, 7 figure

    Coherence effects in scattering order expansion of light by atomic clouds

    Get PDF
    We interpret cooperative scattering by a collection of cold atoms as a multiple scattering process. Starting from microscopic equations describing the response of NN atoms to a probe light beam, we represent the total scattered field as an infinite series of multiple scattering events. As an application of the method, we obtain analytical expressions of the coherent intensity in the double scattering approximation for Gaussian density profiles. In particular, we quantify the contributions of coherent backward and forward scattering.Comment: 10 pages, 6 figure

    Interplay between radiation pressure force and scattered light intensity in the cooperative scattering by cold atoms

    Get PDF
    The interplay between the superradiant emission of a cloud of cold two-level atoms and the radiation pressure force is discussed. Using a microscopic model of coupled atomic dipoles driven by an external laser, the radiation field and the average radiation pressure force are derived. A relation between the far-field scattered intensity and the force is derived, using the optical theorem. Finally, the scaling of the sample scattering cross section with the parameters of the system is studied.Comment: 10 pages, 3 figures, article for special issue of PQE 201

    Cavity-Controlled Collective Scattering at the Recoil Limit

    Full text link
    We study collective scattering with Bose-Einstein condensates interacting with a high-finesse ring cavity. The condensate scatters the light of a transverse pump beam superradiantly into modes which, in contrast to previous experiments, are not determined by the geometrical shape of the condensate, but specified by a resonant cavity mode. Moreover, since the recoil-shifted frequency of the scattered light depends on the initial momentum of the scattered fraction of the condensate, we show that it is possible to employ the good resolution of the cavity as a filter selecting particular quantized momentum states.Comment: 4 pages, 4 figure

    Photonic Band Gaps in One-Dimensionally Ordered Cold Atomic Vapors

    Full text link
    We experimentally investigate the Bragg reflection of light at one-dimensionally ordered atomic structures by using cold atoms trapped in a laser standing wave. By a fine tuning of the periodicity, we reach the regime of multiple reflection due to the refractive index contrast between layers, yielding an unprecedented high reflectance efficiency of 80%. This result is explained by the occurrence of a photonic band gap in such systems, in accordance with previous predictions
    corecore