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The interplay between the superradiant emission of a cloud of cold two-level atoms and the radiation pressure force is
discussed. Using a microscopic model of coupled atomic dipoles driven by an external laser, the radiation field and the
average radiation pressure force are derived. A relation between the far-field scattered intensity and the force is derived,
using the optical theorem. Finally, the scaling of the sample scattering cross-section with the parameters of the system is
studied.

Keywords: cold atoms; Dicke superradiance; cooperative scattering

1. Introduction

Cooperative effects occur when the behavior of a many body
system is determined by their collective interactions with
each other and thus manifest themselves in a large variety
of physical systems. In this paper, we focus on the specific
case of a collection of atoms illuminated by a laser. In
this situation, the electro-magnetic field mediates resonant
dipole–dipole interactions between the atoms, leading to a
cooperative response of the system, which quantitatively
differs from the single atom response. Such effects are im-
printed on physical observables that can be experimentally
measured such as e.g. the emission diagram or the radiation
pressure force acting on the cloud.

When a single atom is illuminated by a laser, the scat-
tering process results in a force proportional to the number
of scattered photons. Indeed, as an atom absorbs a photon
from the laser of wave vector k0, it acquires a momentum
�k0, but the average momentum change during the emission
process is zero.

For a collection of atoms, the picture changes drastically
as it was first noticed in a pioneering work by Dicke [1]
where he showed enhanced spontaneous emission decay
rates in small and large samples due to constructive interfer-
ences of collective emission. In the situation of an incident
laser scattering on a cloud of atoms, the atoms cooperate
to scatter the light leading to a directional emission. This
phenomenon is due to the synchronization of the atomic
dipoles with the laser. The collective effects become even

∗Corresponding author. Email: robin.kaiser@inln.cnrs.fr

stronger as the atomic medium becomes optically dense
and the radiation of the atoms starts to alter significantly
the wave propagation. Among the other collective effects
that arise, one can mention the collective Lamb shift [2,3],
Mie resonances [4], subradiance [5], the refractive index of
a dilute Bose gas [6] as well as a reduction of the radiation
pressure force [7,8].

Since the radiated light results from the interference of
the waves emitted by each dipole, the simple relation
between emitted photon and atomic recoil is lost. For
example, a striking feature of cooperativity is the mod-
ification of the atomic recoil due to the presence of the
neighboring atoms [9,10], an effect that cannot be deduced
from single-atom physics.

We here discuss the particular relation between the
directional superradiant emission, and the reduction of the
radiation pressure force. The atomic cloud is described as
a microscopic ensemble of coupled atomic dipoles, and
both the radiated field and the force are expressed as a
function of these dipoles. The optical theorem is derived
in this framework, and is shown to lead to a direct relation
between intensity scattered and radiation pressure force for
the cloud center-of-mass.

2. Cooperative scattering model

The atomic cloud is described as a system of two-level
(g and e) atoms, with resonant frequency ωa and position

© 2013 Taylor & Francis
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r j , that are driven by an uniform laser beam with electric
field amplitude E0, frequency ω0 and wave vector k0 =
(ω0/c)êz . The laser–atom interaction is described by the
following Hamiltonian:

H = �Ω0

2

N∑
j=1

[
σ̂ j exp[i(Δ0t − k0 · r j )] + h.c.

]

+ �

N∑
j=1

∑
k

gk

(
σ̂ j exp(−iωat) + σ̂

†
j exp(iωat)

)

×
[
â†

k exp[i(ωk t − k · r j )] + âk exp[−i(ωk t − k · r j )]
]
,

(1)

where Ω0 = d E0/� is the Rabi frequency of the incident
laser field and Δ0 = ω0 − ωa is the detuning between
the laser and the atomic transition. In Equation (1) σ̂ j =
|g j 〉〈e j | is the lowering operator for the j-atom, âk is the
photon annihilation operator and gk = (d2ωk/2�ε0V )1/2 is
the single-photon Rabi frequency, where d is the electric-
dipole transition matrix element and V is the photon mode
volume. The special case where a single photon (mode k)
can be assumed to be present in the system, was extensively
investigated in [2,11,12], and later extended to include a
low-intensity laser in [7,13,14]. The system atoms+photons
is then described by a state of the form [15]:

|Ψ 〉 = α(t)|g1 . . . gN 〉|0〉k

+ exp(−iΔ0t)
N∑

j=1

β j (t)|g1 . . . e j . . . gN 〉|0〉k

+
∑

k

γk(t)|g1 . . . gN 〉|1〉k

+
∑

k

N∑
m,n=1

εm<n,k(t)|g1 . . . em . . . en . . . gN 〉|1〉k,

(2)

The first term in Equation (2) corresponds to the initial
ground state without photons, the second term is the sum
over the states where a single atom has been excited by
the classical field. The third term corresponds to the atoms
that returned to the ground state having emitted a photon
in the mode k, whereas the last one corresponds to the
presence of two excited atoms and one virtual photon with
‘negative’ energy. It is due to the counter-rotating terms in
Hamiltonian (1) and this disappears when the rotating wave
approximation is made. In the linear regime α ≈ 1 and in
the Markov approximation, valid if the decay time is larger
than the photon time-of-flight through the atomic cloud,
the scattering problem reduces to the following differential
equation [13,14,16]

β̇ j =
(

iΔ0 − Γ

2

)
β j − i

Ω0

2
exp(ik0 · r j )

− Γ

2

∑
m �= j

exp(ik0|r j − rm |)
ik0|r j − rm | βm (3)

with initial condition β j (0) = 0, for j = 1, . . . , N .
Here, Γ = V g2

k k2
0/πc = d2k3

0/2πε0� is the single-atom
spontaneous decay rate. The kernel in the last term of
Equation (3) has a real component, −(Γ/2)

∑
m �= j[sin(x jm)/x jm] (where x jm = k0|r j − rm |), describing

the collective atomic decay, and an imaginary component,
i(Γ/2)

∑
m �= j [cos(x jm)/x jm], describing the collective

Lamb shift [16–18]. Notice that while Equation (3) is here
deduced from a quantum mechanical model, it can also be
obtained classically, treating the two-level atoms as weakly
excited classical harmonic oscillators [15,19].

3. Radiated field

The radiation field operator âk evolves according to the
following Heisenberg equation

dâk

dt
= 1

i�
[âk, Ĥ ]

= −igk exp[i(ωk − ωa)t]
N∑

m=1

σ̂m exp(−ik · rm),

(4)

where the fast oscillating term proportional to
exp[i(ωk + ωa)t] has been neglected. The scattered field
is obtained by performing the sum over all the modes,
considering only the positive-frequency part of the electric
field operator

Ês(r, t) =
∑

k

Ek âk(t) exp(ik · r − iωk t), (5)

where Ek = (�ωk/2ε0V )1/2. Integrating Equation (4) with
respect to time, with ak(0) = 0, inserting it in Equation (5),
and assuming the usual Markov approximation, one
obtains [14]

Ês(r, t)≈− dk3
0

4πε0
exp(−iωat)

N∑
m=1

exp(ik0|r − rm |)
k0|r − rm | σ̂m(t).

(6)
When applied on the state (2), neglecting virtual transitions,
it yields Ês |Ψ 〉 = Es exp(−iω0t)|g1 . . . gN 〉, with

Es(r, t) = −�Γ

2d

N∑
m=1

βm(t)
exp(ik0|r − rm |)

k0|r − rm | . (7)

Hence, the radiated field appears as a sum of spherical waves
radiated by the atomic dipoles. In the far-field limit, one has
k0|r−rm | ≈ k0r −k ·rm , with k = k0(r/r), so the field (7)
radiated in a direction k reads

E (far)
s (k, t) ≈ −�Γ

2d

exp(ik0r)

k0r

N∑
m=1

βm(t) exp(−ik · rm).

(8)
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20 T. Bienaimé et al.

The scattered intensity in a direction k is then derived as

Is(k) = ε0c�
2Γ 2

2(dk0r)2

∣∣∣∣∣
N∑

m=1

βm(t) exp(−ik · rm)

∣∣∣∣∣
2

(9)

= ε0c�
2Γ 2

2(dk0r)2

×
⎛
⎝ N∑

m=1

|βm |2+
N∑

j �=m

β jβ
∗
m exp[−ik · (r j − rm)]

⎞
⎠ .

(10)

Integrating this intensity over all directions leads to the
total scattered power

Pr = d2k4
0c

2πε0

⎛
⎝ N∑

m=1

|βm |2+
N∑

m �= j

β jβ
∗
m

sin(k0|r j − rm |)
k0|r j − rm |

⎞
⎠ ,

(11)
where we have used the equality∫

dk̂eik0k̂·d = 4π
sin(k0|d|)

k0|d| . (12)

In Equation (11), the first term corresponds to the incoherent
sum of the single atom radiated power. The second term is
an interference term; in the limit of a cloud small compared
to the wavelength, the dipole moments have the same phase
and this latter term is responsible for a superradiant build-up
of the radiated power ∝ N 2 (see, e.g. [1]).

4. Radiation pressure force

As for the radiation force operator acting on the j th atom,
it is derived from Equation (1) as

F̂ j = −∇r j Ĥ = F̂aj + F̂ej . (13)

A first contribution associated with the absorption of
photons of the pump appears [7,13]:

F̂aj = i�k0
Ω0

2

{
σ̂ j exp[i(Δ0t − k0 · r j )] − h.c.

}
, (14)

whereas the second contribution comes from the emission
of the photons in any direction k:

F̂ej = i�
∑

k

kgk

{
â†

kσ̂ j exp[i(ωk − ωa)t − ik · r j ]

− σ̂
†
j âk exp[−i(ωk − ωa)t + ik · r j ]

}
. (15)

In Equation (15), the counter-rotating terms proportional to
exp[±i(ωk + ωa)t] were neglected.

As we are interested in comparing the radiation pressure
force to the single-atom case, we define the average radia-
tion force F̂ = (1/N )

∑
j F̂ j = (Ftot/N )êz that measures

acceleration of the cloud center-of-mass given by
aCM = F̂/m, with m the single-atom mass. Note that this
average force is N times smaller than the total force Ftot act-
ing on the whole cloud of atoms. Since we consider clouds

with rotational symmetry around the laser axis, this force
is in the same direction as the incident field wave vector
k0 = k0êz . This average force is measured by time-of flight
techniques in cold atomic clouds released, for instance, from
magneto-optical traps (MOTs) and has recently revealed
cooperative effects in the scattering by extended atomic
samples [8,20]. Like the scattered radiation, this force is
an observable that contains signatures of the cooperative
scattering by the atoms [7,8]. The average absorption force
along the z-axis, resulting from the recoil received upon
absorption of a photon from the incident laser, reads

F̂a = i

2N
�k0Ω0

N∑
j=1

[
σ̂ j exp(iΔ0t − ik0 · r j ) − h.c.

]
. (16)

Similarly, the average emission force writes F̂e =
(1/N )

∑
j F̂ej . Inserting the expression for âk from Equa-

tion (4) into Equation (15), and approximating the discrete
sum over the modes k by an integral, it is possible to obtain,
as was done for the radiation field operator ÊS of Equa-
tion (7), the following expression for the average emission
force along the z-axis [7]:

F̂e = −�k0Γ

8π N

∫ 2π

0
dφ

∫ π

0
dθ sin θ cos θ

×
N∑

j,m=1

[
exp[−ik · (r j − rm)]σ̂ †

m σ̂ j + h.c.
]
.

(17)

Neglecting virtual photon contributions, the expectation
values of the absorption and emission forces for state (2)
are

〈F̂a〉 = −�k0Ω0

N

N∑
j=1

Im
[
β j exp(−ik0 · r j )

]
, (18)

〈F̂e〉 = −�k0Γ

4π N

∫ 2π

0
dφ

∫ π

0
dθ sin θ cos θ

×
N∑

j,m=1

(
β j β

∗
m exp[−ik · (r j − rm)])

= −�k0Γ

N

N∑
j,m=1

(z j − zm)

|r j − rm | j1(k0|r j − rm |)Im (
β j β

∗
m

)
,

(19)

where we used the identity∫ 2π

0
dφ

∫ π

0
dθ sin θ cos θ exp[−ik · (r − r′)]

= 4π i
z − z′

|r − r′| j1(k0|r − r′|). (20)

j1(z) here refers the first-order spherical Bessel function.
Note that the decomposition into absorption (18) and emis-
sion (19) forces is fully compatible with classical expres-
sions of the optical force [21], where the force arises as the
product between the atomic dipole and the total field [22]
(i.e. including the radiation from the other atoms).
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5. Optical theorem

Let us now discuss the formulation of the optical theorem
in the framework of collective scattering. To that purpose,
we consider an infinite slab illuminated by a plane wave. In
the far-field limit, the field in a direction k̂ is

E(r) =
[

E0

2
exp(ik0z) + E (far)

s (r, k̂)

]
exp(−iω0t)

= E0

2

[
exp(ik0z) − exp(ik0r)

k0r
f (k̂)

]
exp(−iω0t),

(21)

where the scattering amplitude for the scattered field f is
given by

f (k̂) = Γ

Ω0

∑
j

β j exp(−ik0k̂ · r j ). (22)

As a consequence, the scattered intensity at a large distance
r from the cloud is

Is = I0
| f (k̂)|2

k2
0r2

, (23)

while the total scattering cross-section is obtained by
integrating over all the solid angle

σsca = 1

k2
0

∫
dk̂| f (k̂)|2. (24)

To simulate numerically the slab illuminated by a plane
wave, we consider a cylinder of transverse size large

Figure 1. Scattering amplitude | f (k̂)|2 as given by Equation (22)
for a cylindrical cloud of thickness 30/k0 and radius 90/k0,
illuminated by a plane wave. The direction of the incoming
wave is indicated by an arrow. The number of scatterers is
N = 20,000, the detuning Δ0 = 0. The color-coded intensity
is represented in log-scale. One can clearly see in red the strong
forward emission of the sample, reminiscent of Mie scattering
by large clouds compared to the wavelength. In the other
directions, the scattered field is speckle-like due to the randomly
positioned two-level scatterers, and describes the spontaneous
emission by the cloud. Performing configuration averages would
smooth out these fluctuations, except in the backward direction
where, in the multiple scattering regime, the well-known
coherent backscattering cone is recovered [23,24]. Finally, the
emission in the transverse dimension is reduced due to the
quasi-one-dimensional geometry. (The color version of this figure
is included in the online version of the journal.)

compared to its thickness and to the wavelength, with a
random homogeneous distribution of atoms. Figure 1 shows
the emission diagram of the scattered field for resonant
excitation and a cylindrical cloud of atoms. The energy
conservation imposes that

σext = σsca + σabs, (25)

where σext and σabs are the cross-sections for extinction
and absorption, respectively. The extinction cross-section
is then obtained from the optical theorem. In the forward
direction the total field is

Efwd(θ = 0) = E0

2

[
exp(ik0z) − exp(ik0r)

k0r
f (0)

]
exp(−iω0t).

(26)

In the slab configuration, the cloud radiates mainly in a
narrow forward cone – the angle of the cone of emission
is given by the inverse of the cloud transverse size. Hence,
observing the field in a plane far from the atoms and within
the forward cone of emission, the radius expands as
r ≈ z + (x2 + y2)/2z, and one obtains

Efwd(r) ≈ E0

2

[
1 − f (0)

k0z
exp[ik0(x2 + y2)/2z]

]

× exp[i(k0z − ω0t)]. (27)

So the intensity reads

|Efwd(r)|2 ≈ |E0|2
4

{
1 − 2

k0z
Re

[
f (0) exp[ik(x2 + y2)/2z]

]}
,

(28)

since we have neglected the quadratic term |Es |2. The
measured intensity is the incident intensity minus the
extinction intensity. In Equation (28), the integration over
x, y yields a factor 2iπ z/k0, and one gets

σext = −4π

k2
0

Im[ f (0)]. (29)

Hence, from Equation (24) one obtains the relation

−Im[ f (0)] = 1

4π

∫
dk̂| f (k̂)|2 + k2

0

4π
σabs. (30)

In our microscopic description of the light–atom interaction
there is no absorption, so that σabs = 0.An illustration of the
validity of the optical theorem is given in Figure 2 for reso-
nant light scattering by a slab containing two-level scatterers
with a uniform density distribution. From Equations (22)
and (29), and introducing the wavevector k = k0k̂(θ, φ),
we obtain the relation

− Ω0

Γ

∑
j

Im
[
β j exp(−ik0 · r j )

]

= 1

4π

∫ 2π

0
dφ

∫ π

0
dθ sin θ

×
∑
j,m

[
β jβ

∗
m exp[−ik0k̂ · (r j − rm)]

]
. (31)
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22 T. Bienaimé et al.

Figure 2. Illustration of the optical theorem. Left: the scattered intensity integrated along φ, i.e. g(θ) = ∫ 2π
0 dφ | f (θ, φ)|2, is shown

for resonant light Δ0 = 0 and a slab geometry with a uniform density distribution. The number of atomic scatterers is varied between 1
and 5000 (from inside to outside curves). The transverse size of the slab is Lx,y = 80/k0 and the longitudinal size is varied such that
Lz = (20/k0)N/5000. This procedure allows us to vary the optical thickness b0 = 4π N/(k2

0 Lx L y) between 3 × 10−3 and 10 while
maintaining the atomic density constant. We would like to insist on the fact that the optical thickness is computed for the scattering of a
scalar field which leads to an unusual resonant cross-section for light σ0 = λ2/π (different from the well-known resonant cross-section
σ0 = 3λ2/(2π) for vectorial light). The incident field is coming from the left and the intensity is plotted in log-scale. In addition to the
forward Mie-like lobe, a lobe is also observed in the backward direction which we attribute to light reflection due to the sharp variation
of optical index when the light hits the slab. Right: the blue circles represent the total scattering cross-section obtained by integrating the
emission diagram over θ and φ, i.e. σsca = 1/k2

0 × ∫ π
0 dθ sin(θ)g(θ). In our microscopic model, there is no absorption so that σabs = 0,

leading to σext = σsca. The optical theorem Equation (29) can thus be written as σsca = −(4π/k2
0)Im[ f (0)], which is plotted in magenta.

The good agreement between the two curves illustrates the validity of the optical theorem. (The color version of this figure is included in
the online version of the journal.)

Consequently, using Equations (18) and (19), the average
force along the z-axis reads:

Fz = �k0Γ

4π N

∫ 2π

0
dφ

∫ π

0
dθ sin θ(1 − cos θ)

×
N∑

j,m=1

(
β jβ

∗
m exp[−ik · (r j − rm)]

)
. (32)

We observe from Equation (32) that the average radiation
pressure force is not merely proportional to the excitation
probability, i.e.

∑
j |β j |2, but it is the result of an inter-

ference between the different atomic dipoles β j . For this
reason a measurement of the force captures the coherence
properties of the scattering process as well as the detection
of the light intensity. To make this point more explicit, using
Equation (9), it is possible to write the force as

Fz = r2

Nc

∫ 2π

0
dφ

∫ π

0
dθ sin θ(1 − cos θ)Is(θ, φ), (33)

where the scattered far-field intensity is Is(θ, φ) =
2cε0|Es(θ, φ)|2. This highlights the fact that the radiation
pressure force, that pushes the atoms along the direction of
the incident beam, is proportional to the net radiation flux
of the scattered intensity.

In the case of an isotropic emission (e.g. single-atom
case, or cloud much smaller than the wavelength), the scat-
tered intensity Is is independent of the angle and we get
Fz = (4πr2/(Nc))Is : the direct proportionality between
scattered power and radiation pressure force is recovered.

The cooperative effect of light scattering in such small sam-
ples is then encoded in the total scattered intensity Is . In
the case of superradiant scattering for larger samples, a
pronounced emission into the forward direction decreases
the radiation force, as observed for example in [8].

6. Scaling of the scattering cross-section

In this section we are interested in understanding how the
scattering cross-section scales with the parameters of the
system. We consider the case of a slab with uniform density
distribution. The slab contains N atoms and its size along
the x , y, z axes is denoted by Lx , L y , Lz respectively. The
numerical simulations presented in Figure 3 show how the
scattering cross-section depends on the optical thickness of
the cloud b0 = 4π N/(k2

0 Lx L y). For dilute clouds of atoms
we find:

σsca = 2.15 × Lx L y

[
1 − exp

(
− b0

2.15

)]
. (34)

When the slab is optically thick, i.e. b0 
 1, we observe
that the cross-section appears to approach 2 × Lx L y . This
factor of two corresponds to the well-known ‘extinction
paradox’ [25,26] for which the extinction cross-section is
twice as large as the one predicted by geometrical optics due
to the diffraction contribution. The residual deviations from
the factor of 2 between the scattering and geometrical cross-
sections might be associated with a still moderate size of our
sample [27], or to dipole blockade effects [28,29]. For spher-
ical dielectric spheres, σext shows an oscillatory behavior
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Figure 3. Scaling of the scattering cross-section. Left plot: following the same procedure as the one described in Figure 2, we compute
the scattering cross-sections for different slab geometries. The results are shown in a scatter plot with different colors. The parameters of
the simulations are reported in the legend of the figure. By fitting the data, constraining the slope in the limit b0 → 0 (right plot), we
obtain a scattering cross-section that scales with the optical thickness b0 of the slab according to Equation (34) (magenta full line). (The
color version of this figure is included in the online version of the journal.)

around 2σgeo (σgeo = Lx L y for our square geometry),
which is damped for increasing sizes of the sphere [30,31].
When b0 � 1 the scattering cross-section can be written
as σsca = (Lx L y)b0 = Nσ0, where σ0 = λ2/π is the
resonant scattering cross-section for a single atom in the
scalar wave description (it differs from the well-known
cross-section for vectorial light σ0 = 3λ2/(2π)). In this
limit, the interpretation is clear: at low optical thickness the
cooperative effects are negligible and the scattering of light
is given by the response of N independent atoms. We refer
the reader to [32] for a study of the areal scaling of the
light scattering by varying the size of a dense, cold atomic
cloud.

Before concluding, we would like to underline the imp-
ortance of the role of diffraction. Since we are using a
microscopic description of the system, diffraction effects
for the scattered field are already included in our model.
However, free propagation of the incident field needs to
be added for a fully consistent description. In this respect,
the incident plane wave considered so far in the paper is a
peculiar case. We will focus on these aspects in forthcom-
ing studies to precisely understand the role of diffraction.
This will naturally lead us to compare our coherent micro-
scopic model of coupled dipoles to stochastic incoherent
models commonly used to describe photon propagation in
random media. Understanding coherent light propagation
in disordered resonant scatterers is of prime importance for
both the atomic physics and the waves in complex media
communities.

7. Conclusion

We here discussed the superradiant emission of a cloud of
cold atoms, when the interference of the waves radiated by
the atomic dipoles builds up a coherent emission. Despite
the fact that the simple relation between absorbed photons

and radiation pressure force existing in the single-atom
case was lost, the optical theorem allowed one to recover a
simple relation between the total scattered intensity and the
displacement of the cloud center-of-mass. The measure of
the force of the center of mass of the atomic cloud contains
(partial) information on the scattered intensity, even for
large values of optical thickness of the cloud. We have com-
puted the total scattering cross-section which approaches a
value close to twice the geometrical cross-section of the
sample, in line with the well-known extinction paradox.
Finally, understanding the role of diffraction paves the way
for further studies to compare our coherent microscopic
model to well-established stochastic incoherent models de-
scribing photon propagation in random media.
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