30 research outputs found

    Human milk nutritional composition across lactational stages in Central Africa

    Get PDF
    The African region encompasses the highest undernutrition burden with the highest neonatal and infant mortality rates globally. Under these circumstances, breastfeeding is one of the most effective ways to ensure child health and development. However, evidence on human milk (HM) composition from African women is scarce. This is of special concern, as we have no reference data from HM composition in the context of food insecurity in Africa. Furthermore, data on the evolution of HM across lactational stages in this setting lack as well. In the MITICA study, we conducted a cohort study among 48 Central-African women and their 50 infants to analyze the emergence of gut dysbiosis in infants and describe the mother-infant transmission of microbiota between birth and 6 months of age. In this context, we assessed nutritional components in HM of 48 lactating women in Central Africa through five sampling times from week 1 after birth until week 25. Unexpectedly, HM-type III (Secretor + and Lewis genes -) was predominant in HM from Central African women, and some nutrients differed significantly among HM-types. While lactose concentration increased across lactation periods, fatty acid concentration did not vary significantly. The overall median level of 16 detected individual human milk oligosaccharides (HMOs; core structures as well as fucosylated and sialylated ones) decreased from 7.3 g/l at week 1 to 3.5 g/l at week 25. The median levels of total amino acids in HM dropped from 12.8 mg/ml at week 1 to 7.4 mg/ml at week 25. In contrast, specific free amino acids increased between months 1 and 3 of lactation, e.g., free glutamic acid, glutamine, aspartic acid, and serine. In conclusion, HM-type distribution and certain nutrients differed from Western mother HM

    Food Insecurity and Maternal Diet Influence Human Milk Composition between the Infant's Birth and 6 Months after Birth in Central-Africa

    Get PDF
    Although the World Health Organization (WHO) and UNICEF recommend that infants should be exclusively breastfed for the first 6 months of life, evidence is scarce on how the mother’s undernourishment status at delivery and maternal dietary factors influence human milk (HM) composition during the first 6 months of life in regions with high food insecurity. The maternal undernourishment status at delivery, maternal diet, and HM nutrients were assessed among 46 women and their 48 vaginally born infants in Bangui at 1, 4, 11, 18, and 25 weeks after birth through 24-h recalls and food consumption questionnaires from December 2017 to June 2019 in the context of the "Mother-to-Infant TransmIssion of microbiota in Central-Africa" (MITICA) study. High food insecurity indexes during the follow-up were significantly associated with them having lower levels of many of the human milk oligosaccharides (HMOs) that were measured and with lower levels of retinol (aß-coef = −0.2, p value = 0.04), fatty acids (aß-coef = −7.2, p value = 0.03), and amino acids (aß-coef = −2121.0, p value < 0.001). On the contrary, women from food-insecure households displayed significantly higher levels of lactose in their HM (aß-coef = 3.3, p value = 0.02). In parallel, the consumption of meat, poultry, and fish was associated with higher HM levels of many of the HMOs that were measured, total amino acids (aß-coef = 5484.4, p value < 0.001), and with lower HM levels of lactose (aß-coef = −15.6, p value = 0.01). Food insecurity and maternal diet had a meaningful effect on HM composition with a possible impact being an infant undernourishment risk. Our results plead for consistent actions on food security as an effective manner to influence the nutritional content of HM and thereby, potentially improve infant survival and healthy growth

    Kinetics analysis of the reactions responsible for myoglobin chemical state in meat using an advanced reaction–diffusion model

    No full text
    International audienceHere we developed an advanced reaction-diffusion model to predict the evolution of the myoglobin state in beef meat using numerous reactions with rate constants of different orders of magnitude. The initial scheme included 44 reactions from the literature. Sensitivity analysis proved that this initial scheme was equivalent to a simple 22reaction scheme. Results calculated with this scheme were compared against the spatial distributions of oxymyoglobin (MbO 2), metmyoglobin (MMb) and deoxymyoglobin (DMb) measured in meat cuts stored at 20 • C under air-permeable packaging. We found global agreement between measured and calculated distributions when adequate rate constant values were used, particularly for the formation of MbO 2 from DMb. The model was used to calculate evolutions in MbO 2 and MMb distributions under different situations (modified-atmosphere packaging, Fenton chemistry with or without water-soluble antioxidants, increased mitochondrial oxygen consumption). Results were used to discuss the underlying kinetics reaction mechanisms and the performances and limits of the model

    Food Insecurity and Maternal Diet Influence Human Milk Composition between the Infant&rsquo;s Birth and 6 Months after Birth in Central-Africa

    No full text
    Although the World Health Organization (WHO) and UNICEF recommend that infants should be exclusively breastfed for the first 6 months of life, evidence is scarce on how the mother&rsquo;s undernourishment status at delivery and maternal dietary factors influence human milk (HM) composition during the first 6 months of life in regions with high food insecurity. The maternal undernourishment status at delivery, maternal diet, and HM nutrients were assessed among 46 women and their 48 vaginally born infants in Bangui at 1, 4, 11, 18, and 25 weeks after birth through 24-h recalls and food consumption questionnaires from December 2017 to June 2019 in the context of the "Mother-to-Infant TransmIssion of microbiota in Central-Africa" (MITICA) study. High food insecurity indexes during the follow-up were significantly associated with them having lower levels of many of the human milk oligosaccharides (HMOs) that were measured and with lower levels of retinol (a&szlig;-coef = &minus;0.2, p value = 0.04), fatty acids (a&szlig;-coef = &minus;7.2, p value = 0.03), and amino acids (a&szlig;-coef = &minus;2121.0, p value &lt; 0.001). On the contrary, women from food-insecure households displayed significantly higher levels of lactose in their HM (a&szlig;-coef = 3.3, p value = 0.02). In parallel, the consumption of meat, poultry, and fish was associated with higher HM levels of many of the HMOs that were measured, total amino acids (a&szlig;-coef = 5484.4, p value &lt; 0.001), and with lower HM levels of lactose (a&szlig;-coef = &minus;15.6, p value = 0.01). Food insecurity and maternal diet had a meaningful effect on HM composition with a possible impact being an infant undernourishment risk. Our results plead for consistent actions on food security as an effective manner to influence the nutritional content of HM and thereby, potentially improve infant survival and healthy growth

    Data_Sheet_1_Human milk nutritional composition across lactational stages in Central Africa.docx

    No full text
    The African region encompasses the highest undernutrition burden with the highest neonatal and infant mortality rates globally. Under these circumstances, breastfeeding is one of the most effective ways to ensure child health and development. However, evidence on human milk (HM) composition from African women is scarce. This is of special concern, as we have no reference data from HM composition in the context of food insecurity in Africa. Furthermore, data on the evolution of HM across lactational stages in this setting lack as well. In the MITICA study, we conducted a cohort study among 48 Central-African women and their 50 infants to analyze the emergence of gut dysbiosis in infants and describe the mother-infant transmission of microbiota between birth and 6 months of age. In this context, we assessed nutritional components in HM of 48 lactating women in Central Africa through five sampling times from week 1 after birth until week 25. Unexpectedly, HM-type III (Secretor + and Lewis genes -) was predominant in HM from Central African women, and some nutrients differed significantly among HM-types. While lactose concentration increased across lactation periods, fatty acid concentration did not vary significantly. The overall median level of 16 detected individual human milk oligosaccharides (HMOs; core structures as well as fucosylated and sialylated ones) decreased from 7.3 g/l at week 1 to 3.5 g/l at week 25. The median levels of total amino acids in HM dropped from 12.8 mg/ml at week 1 to 7.4 mg/ml at week 25. In contrast, specific free amino acids increased between months 1 and 3 of lactation, e.g., free glutamic acid, glutamine, aspartic acid, and serine. In conclusion, HM-type distribution and certain nutrients differed from Western mother HM.</p
    corecore