6,329 research outputs found
Nonlinear closures for scale separation in supersonic magnetohydrodynamic turbulence
Turbulence in compressible plasma plays a key role in many areas of
astrophysics and engineering. The extreme plasma parameters in these
environments, e.g. high Reynolds numbers, supersonic and super-Alfvenic flows,
however, make direct numerical simulations computationally intractable even for
the simplest treatment -- magnetohydrodynamics (MHD). To overcome this problem
one can use subgrid-scale (SGS) closures -- models for the influence of
unresolved, subgrid-scales on the resolved ones. In this work we propose and
validate a set of constant coefficient closures for the resolved, compressible,
ideal MHD equations. The subgrid-scale energies are modeled by Smagorinsky-like
equilibrium closures. The turbulent stresses and the electromotive force (EMF)
are described by expressions that are nonlinear in terms of large scale
velocity and magnetic field gradients. To verify the closures we conduct a
priori tests over 137 simulation snapshots from two different codes with
varying ratios of thermal to magnetic pressure () and sonic Mach numbers (). Furthermore, we make a
comparison to traditional, phenomenological eddy-viscosity and
closures. We find only mediocre performance of the
kinetic eddy-viscosity and closures, and that the
magnetic eddy-viscosity closure is poorly correlated with the simulation data.
Moreover, three of five coefficients of the traditional closures exhibit a
significant spread in values. In contrast, our new closures demonstrate
consistently high correlation and constant coefficient values over time and and
over the wide range of parameters tested. Important aspects in compressible MHD
turbulence such as the bi-directional energy cascade, turbulent magnetic
pressure and proper alignment of the EMF are well described by our new
closures.Comment: 15 pages, 6 figures; to be published in New Journal of Physic
Transport anisotropy in biaxially strained La(2/3)Ca(1/3)MnO(3) thin films
Due to the complex interplay of magnetic, structural, electronic, and orbital
degrees of freedom, biaxial strain is known to play an essential role in the
doped manganites. For coherently strained La(2/3)Ca(1/3)MnO(3) thin films grown
on SrTiO(3) substrates, we measured the magnetotransport properties both
parallel and perpendicular to the substrate and found an anomaly of the
electrical transport properties. Whereas metallic behavior is found within the
plane of biaxial strain, for transport perpendicular to this plane an
insulating behavior and non-linear current-voltage characteristics (IVCs) are
observed. The most natural explanation of this anisotropy is a strain induced
transition from an orbitally disordered ferromagnetic state to an orbitally
ordered state associated with antiferromagnetic stacking of ferromagnetic
manganese oxide planes.Comment: 5 pages, 4 figure
Rapid evolution of chemosensory receptor genes in a pair of sibling species of orchid bees (Apidae: Euglossini).
BackgroundInsects rely more on chemical signals (semiochemicals) than on any other sensory modality to find, identify, and choose mates. In most insects, pheromone production is typically regulated through biosynthetic pathways, whereas pheromone sensory detection is controlled by the olfactory system. Orchid bees are exceptional in that their semiochemicals are not produced metabolically, but instead male bees collect odoriferous compounds (perfumes) from the environment and store them in specialized hind-leg pockets to subsequently expose during courtship display. Thus, the olfactory sensory system of orchid bees simultaneously controls male perfume traits (sender components) and female preferences (receiver components). This functional linkage increases the opportunities for parallel evolution of male traits and female preferences, particularly in response to genetic changes of chemosensory detection (e.g. Odorant Receptor genes). To identify whether shifts in pheromone composition among related lineages of orchid bees are associated with divergence in chemosensory genes of the olfactory periphery, we searched for patterns of divergent selection across the antennal transcriptomes of two recently diverged sibling species Euglossa dilemma and E. viridissima.ResultsWe identified 3185 orthologous genes including 94 chemosensory loci from five different gene families (Odorant Receptors, Ionotropic Receptors, Gustatory Receptors, Odorant Binding Proteins, and Chemosensory Proteins). Our results revealed that orthologs with signatures of divergent selection between E. dilemma and E. viridissima were significantly enriched for chemosensory genes. Notably, elevated signals of divergent selection were almost exclusively observed among chemosensory receptors (i.e. Odorant Receptors).ConclusionsOur results suggest that rapid changes in the chemosensory gene family occurred among closely related species of orchid bees. These findings are consistent with the hypothesis that strong divergent selection acting on chemosensory receptor genes plays an important role in the evolution and diversification of insect pheromone systems
The Complex Gap in Color Superconductivity
We solve the gap equation for color-superconducting quark matter in the 2SC
phase, including both the energy and the momentum dependence of the gap,
\phi=\phi(k_0,\vk). For that purpose a complex Ansatz for \phi is made. The
calculations are performed within an effective theory for cold and dense quark
matter. The solution of the complex gap equation is valid to subleading order
in the strong coupling constant g and in the limit of zero temperature. We find
that, for momenta sufficiently close to the Fermi surface and for small
energies, the dominant contribution to the imaginary part of arises from
Landau-damped magnetic gluons. Further away from the Fermi surface and for
larger energies the other gluon sectors have to be included into Im\phi. We
confirm that Im contributes a correction of order g to the prefactor of
\phi for on-shell quasiquarks sufficiently close to the Fermi surface, whereas
further away from the Fermi surface Im\phi and Re\phi are of the same order.
Finally, we discuss the relevance of Im\phi for the damping of quasiquark
excitations.Comment: 23 pages, 3 figures, 8 tables. Typos corrected, minor corrections to
the text. Accepted for publication in PR
Simulations of atomic trajectories near a dielectric surface
We present a semiclassical model of an atom moving in the evanescent field of
a microtoroidal resonator. Atoms falling through whispering-gallery modes can
achieve strong, coherent coupling with the cavity at distances of approximately
100 nanometers from the surface; in this regime, surface-induced Casmir-Polder
level shifts become significant for atomic motion and detection. Atomic transit
events detected in recent experiments are analyzed with our simulation, which
is extended to consider atom trapping in the evanescent field of a microtoroid.Comment: 29 pages, 10 figure
Magnetic moments of W 5d in Ca2CrWO6 and Sr2CrWO6 double perovskites
We have investigated the magnetic moment of the W ion in the ferrimagnetic
double perovskites Sr2CrWO6 and Ca2CrWO6 by X-ray magnetic circular dichroism
(XMCD) at the W L(2,3) edges. In both compounds a finite negative spin and
positive orbital magnetic moment was detected. The experimental results are in
good agreement with band-structure calculations for (Sr/Ca)2CrWO6 using the
full-potential linear muffin-tin orbital method. It is remarkable, that the
magnetic ordering temperature, TC, is correlated with the magnetic moment at
the 'non-magnetic' W atom.Comment: accepted for publicatio
Systematic Perturbation Theory for Dynamical Coarse-Graining
We demonstrate how the dynamical coarse-graining approach can be
systematically extended to higher orders in the coupling between system and
reservoir. Up to second order in the coupling constant we explicitly show that
dynamical coarse-graining unconditionally preserves positivity of the density
matrix -- even for bath density matrices that are not in equilibrium and also
for time-dependent system Hamiltonians. By construction, the approach correctly
captures the short-time dynamics, i.e., it is suitable to analyze non-Markovian
effects. We compare the dynamics with the exact solution for highly
non-Markovian systems and find a remarkable quality of the coarse-graining
approach. The extension to higher orders is straightforward but rather tedious.
The approach is especially useful for bath correlation functions of simple
structure and for small system dimensions.Comment: 17 pages, 5 figures, version accepted for publication in PR
- …