362 research outputs found

    Nanophotonic hybridization of narrow atomic cesium resonances and photonic stop gaps of opaline nanostructures

    Get PDF
    We study a hybrid system consisting of a narrowband atomic optical resonance and the long-range periodic order of an opaline photonic nanostructure. To this end, we have infiltrated atomic cesium vapor in a thin silica opal photonic crystal. With increasing temperature, the frequencies of the opal's reflectivity peaks shift down by >20% due to chemical reduction of the silica. Simultaneously, the photonic bands and gaps shift relative to the fixed near-infrared cesium D1 transitions. As a result the narrow atomic resonances with high finesse (f/df=8E5) dramatically change shape from a usual dispersive shape at the blue edge of a stop gap, to an inverted dispersion lineshape at the red edge of a stop gap. The lineshape, amplitude, and off-resonance reflectivity are well modeled with a transfer-matrix model that includes the dispersion and absorption of Cs hyperfine transitions and the chemically-reduced opal. An ensemble of atoms in a photonic crystal is an intriguing hybrid system that features narrow defect-like resonances with a strong dispersion, with potential applications in slow light, sensing and optical memory.Comment: 8 pages, 6 figure

    Dynamical ultrafast all-optical switching of planar GaAs/AlAs photonic microcavities

    Get PDF
    The authors study the ultrafast switching-on and -off of planar GaAs/AlAs microcavities. Up to 0.8% refractive index changes are achieved by optically exciting free carriers at 1720 nm and a pulse energy of 1.8 micro Joules. The cavity resonance is dynamically tracked by measuring reflectivity versus time delay with tunable laser pulses, and is found to shift by as much as 3.3 linewidths within a few picoseconds. The switching-off occurs with a decay time of around 50 ps. The authors derive the dynamic behavior of the carrier density and of the complex refractive index. They propose that the inferred 10 GHz switching rate may be tenfold improved by optimized sample growth.Comment: 1.) Replaced figure 1 (linear reflectivity) with a more recent and improved measurement 2.) Included a Figure of Merit for switching and compared to other recent contributions 3.) Explained more precisely the effect of embedded Quantum Dots (namely no effect on measurement) 4.) Changed wording in a few place

    Broadband sensitive pump-probe setup for ultrafast optical switching of photonic nanostructures and semiconductors

    Get PDF
    We describe an ultrafast time resolved pump-probe spectroscopy setup aimed at studying the switching of nanophotonic structures. Both fs pump and probe pulses can be independently tuned over broad frequency range between 3850 and 21050 cm−1^{-1}. A broad pump scan range allows a large optical penetration depth, while a broad probe scan range is crucial to study strongly photonic crystals. A new data acquisition method allows for sensitive pump-probe measurements, and corrects for fluctuations in probe intensity and pump stray light. We observe a tenfold improvement of the precision of the setup compared to laser fluctuations, allowing a measurement accuracy of better than Δ\DeltaR= 0.07% in a 1 s measurement time. Demonstrations of the improved technique are presented for a bulk Si wafer, a 3D Si inverse opal photonic bandgap crystal, and z-scan measurements of the two-photon absorption coefficient of Si, GaAs, and the three-photon absorption coefficient of GaP in the infrared wavelength range.Comment: 31 pages, 15 figure

    Observation of a stronger-than-adiabatic change of light trapped in an ultrafast switched GaAs-AlAs microcavity

    Get PDF
    We study the time-resolved reflectivity spectrum of a switched planar GaAs-AlAs microcavity. Between 5 and 40 ps after the switching (pump) pulse we observe a strong excess probe reflectivity and a change of the frequency of light trapped in the cavity up to 5 linewidths away from the cavity resonance. This frequency change does not adiabatically follow the fast-changing cavity resonance. The frequency change is attributed to an accumulated phase change due to the time-dependent refractive index. An analytical model predicts dynamics in qualitative agreement with the experiments, and points to crucial parameters that control future applications.Comment: Discussed effect of probe bandwidth. Included functional forms of n(z) and R(z

    Laser Transmitter Design and Performance for the Slope Imaging Multi-Polarization Photon-Counting Lidar (SIMPL) Instrument

    Get PDF
    The Slope Imaging Multi-polarization Photon-counting Lidar (SIMPL) instrument is a polarimetric, two-color, multibeam push broom laser altimeter developed through the NASA Earth Science Technology Office Instrument Incubator Program and has been flown successfully on multiple airborne platforms since 2008. In this talk we will discuss the laser transmitter performance and present recent science data collected over the Greenland ice sheet and sea ice in support of the NASA Ice Cloud and land Elevation Satellite 2 (ICESat-2) mission to be launched in 2017

    Injections of hope: supporting participants in clinical trials

    Get PDF
    Understanding hope and better appreciating the personal investments of trial participants could improve patient experience and trial design, argue Emma Harding, Catherine Mummery, and colleague

    Continuum and spectral line observations of the OH Megamaser galaxy Arp 220

    Get PDF
    We present MERLIN observations of the continuum (both 1.6 and 5 GHz) and OH maser emission towards Arp220. the correct spatial configuration of the various componnents of the galaxy is revealed. In the eastern component the masers are shown to be generally coincident with the larger scale continuum emission; in the west, the masers and continuum do not generally arise from the same location. A velocity gradient (0.32+/-0.03km/s/pc) is found in the eastern nuclear region in MERLIN scales; this gradient is three times smaller than seen in OH and implies that the OH gas lies inside the HI. A re-analysis of previously presented global VLBI data (Lonsdale et al. 1998) reveals a very high velocity gradient (18.67+/-0.12km/s/pc) in one component, possibly the site of a heavily obscured AGN.Comment: 10 pages, 11 figures, accepted by MNRA

    Performance Considerations for the SIMPL Single Photon, Polarimetric, Two-Color Laser Altimeter as Applied to Measurements of Forest Canopy Structure and Composition

    Get PDF
    The Slope Imaging Multi-polarization Photon-counting Lidar (SIMPL) is a multi-beam, micropulse airborne laser altimeter that acquires active and passive polarimetric optical remote sensing measurements at visible and near-infrared wavelengths. SIMPL was developed to demonstrate advanced measurement approaches of potential benefit for improved, more efficient spaceflight laser altimeter missions. SIMPL data have been acquired for wide diversity of forest types in the summers of 2010 and 2011 in order to assess the potential of its novel capabilities for characterization of vegetation structure and composition. On each of its four beams SIMPL provides highly-resolved measurements of forest canopy structure by detecting single-photons with 15 cm ranging precision using a narrow-beam system operating at a laser repetition rate of 11 kHz. Associated with that ranging data SIMPL provides eight amplitude parameters per beam unlike the single amplitude provided by typical laser altimeters. Those eight parameters are received energy that is parallel and perpendicular to that of the plane-polarized transmit pulse at 532 nm (green) and 1064 nm (near IR), for both the active laser backscatter retro-reflectance and the passive solar bi-directional reflectance. This poster presentation will cover the instrument architecture and highlight the performance of the SIMPL instrument with examples taken from measurements for several sites with distinct canopy structures and compositions. Specific performance areas such as probability of detection, after pulsing, and dead time, will be highlighted and addressed, along with examples of their impact on the measurements and how they limit the ability to accurately model and recover the canopy properties. To assess the sensitivity of SIMPL's measurements to canopy properties an instrument model has been implemented in the FLIGHT radiative transfer code, based on Monte Carlo simulation of photon transport. SIMPL data collected in 2010 over the Smithsonian Environmental Research Center, MD are currently being modelled and compared to other remote sensing and in situ data sets. Results on the adaptation of FLIGHT to model micropulse, single'photon ranging measurements are presented elsewhere at this conference. NASA's ICESat-2 spaceflight mission, scheduled for launch in 2016, will utilize a multi-beam, micropulse, single-photon ranging measurement approach (although non-polarimetric and only at 532 nm). Insights gained from the analysis and modelling of SIMPL data will help guide preparations for that mission, including development of calibration/validation plans and algorithms for the estimation of forest biophysical parameters

    Multiwavelength radio observations of the compact starburst in Arp 220

    Get PDF
    We report the first detection at multiple radio wavelengths (13, 6, and 3.6 cm) of 18 compact sources within both nuclei of the Ultra Luminous Infra-Red Galaxy (ULIRG) Arp 220. In just over half of the sources we find that the observed spectra are consistent with the standard model of powerful Type IIn supernovae interacting with their pre-explosion stellar wind. The rate of appearance of new radio sources ascribed to these supernova events suggests that a large fraction of core-collapse supernovae in Arp 220 are highly luminous, possibly implying a radically different stellar initial mass function (IMF) or stellar evolution compared to galactic disks. A second group of sources, consisting of the brightest and longest monitored sources at 18 cm, do not easily fit the radio supernova model. We propose that these are young supernova remnants that have just begun interacting with their surrounding dense ISM

    VLBI Images of 49 Radio Supernovae in Arp 220

    Get PDF
    We have used a Very Long Baseline Interferometry (VLBI) array at 18cm wavelength to image the nucleus of the luminous IR galaxy Arp 220 at ~1 pc linear resolution, and with very high sensitivity. The resulting map has an rms of 5.5 microJy/beam, and careful image analysis results in 49 confirmed point sources ranging in flux density from 1.2 mJy down to ~60 microJy. Comparison with high sensitivity data from 12 months earlier reveals at least four new sources. The favored interpretation of these sources is that they are radio supernovae, and if all new supernovae are detectable at this sensitivity, a resulting estimate of the supernova rate in the Arp 220 system is 4 +/- 2 per year. The implied star formation rate is sufficient to power the entire observed far-infrared luminosity of the galaxy. The two nuclei of Arp 220 exhibit striking similarities in their radio properties, though the western nucleus is more compact, and appears to be ~3 times more luminous than the eastern nucleus. There are also some puzzling differences, and differential free-free absorption, synchrotron aging and expansion losses may all be playing a role. Comparison with the nearby starburst galaxy M82 supports the hypothesis that the activity in Arp 220 is essentially a scaled-up version of that in M82.Comment: 24 pages, 3 figures, 1 table. Accepted for publication in Ap.
    • …
    corecore