50 research outputs found

    Response to Galbraith and Weill

    Full text link

    Quality Measures for the Diagnosis and Non-Operative Management of Carpal Tunnel Syndrome in Occupational Settings

    Get PDF
    Introduction: Providing higher quality medical care to workers with occupationally associated carpal tunnel syndrome (CTS) may reduce disability, facilitate return to work, and lower the associated costs. Although many workers’ compensation systems have adopted treatment guidelines to reduce the overuse of unnecessary care, limited attention has been paid to ensuring that the care workers do receive is high quality. Further, guidelines are not designed to enable objective assessments of quality of care. This study sought to develop quality measures for the diagnostic evaluation and non-operative management of CTS, including managing occupational activities and functional limitations. Methods: Using a variation of the well-established RAND/UCLA Appropriateness Method, we developed draft quality measures using guidelines and literature reviews. Next, in a two-round modified-Delphi process, a multidisciplinary panel of 11 U.S. experts in CTS rated the measures on validity and feasibility. Results: Of 40 draft measures, experts rated 31 (78%) valid and feasible. Nine measures pertained to diagnostic evaluation, such as assessing symptoms, signs, and risk factors. Eleven pertain to non-operative treatments, such as the use of splints, steroid injections, and medications. Eleven others address assessing the association between symptoms and work, managing occupational activities, and accommodating functional limitations. Conclusions: These measures will complement existing treatment guidelines by enabling providers, payers, policymakers, and researchers to assess quality of care for CTS in an objective, structured manner. Given the characteristics of previous measures developed with these methods, greater adherence to these measures will probably lead to improved patient outcomes at a population level

    Clonal architecture in mesothelioma is prognostic and shapes the tumour microenvironment.

    Get PDF
    Malignant Pleural Mesothelioma (MPM) is typically diagnosed 20-50 years after exposure to asbestos and evolves along an unknown evolutionary trajectory. To elucidate this path, we conducted multi-regional exome sequencing of 90 tumour samples from 22 MPMs acquired at surgery. Here we show that exomic intratumour heterogeneity varies widely across the cohort. Phylogenetic tree topology ranges from linear to highly branched, reflecting a steep gradient of genomic instability. Using transfer learning, we detect repeated evolution, resolving 5 clusters that are prognostic, with temporally ordered clonal drivers. BAP1/-3p21 and FBXW7/-chr4 events are always early clonal. In contrast, NF2/-22q events, leading to Hippo pathway inactivation are predominantly late clonal, positively selected, and when subclonal, exhibit parallel evolution indicating an evolutionary constraint. Very late somatic alteration of NF2/22q occurred in one patient 12 years after surgery. Clonal architecture and evolutionary clusters dictate MPM inflammation and immune evasion. These results reveal potentially drugable evolutionary bottlenecking in MPM, and an impact of clonal architecture on shaping the immune landscape, with potential to dictate the clinical response to immune checkpoint inhibition

    The importance of the cellular stress response in the pathogenesis and treatment of type 2 diabetes

    Get PDF
    Organisms have evolved to survive rigorous environments and are not prepared to thrive in a world of caloric excess and sedentary behavior. A realization that physical exercise (or lack of it) plays a pivotal role in both the pathogenesis and therapy of type 2 diabetes mellitus (t2DM) has led to the provocative concept of therapeutic exercise mimetics. A decade ago, we attempted to simulate the beneficial effects of exercise by treating t2DM patients with 3 weeks of daily hyperthermia, induced by hot tub immersion. The short-term intervention had remarkable success, with a 1 % drop in HbA1, a trend toward weight loss, and improvement in diabetic neuropathic symptoms. An explanation for the beneficial effects of exercise and hyperthermia centers upon their ability to induce the cellular stress response (the heat shock response) and restore cellular homeostasis. Impaired stress response precedes major metabolic defects associated with t2DM and may be a near seminal event in the pathogenesis of the disease, tipping the balance from health into disease. Heat shock protein inducers share metabolic pathways associated with exercise with activation of AMPK, PGC1-a, and sirtuins. Diabetic therapies that induce the stress response, whether via heat, bioactive compounds, or genetic manipulation, improve or prevent all of the morbidities and comorbidities associated with the disease. The agents reduce insulin resistance, inflammatory cytokines, visceral adiposity, and body weight while increasing mitochondrial activity, normalizing membrane structure and lipid composition, and preserving organ function. Therapies restoring the stress response can re-tip the balance from disease into health and address the multifaceted defects associated with the disease
    corecore