4,792 research outputs found

    Fluid inclusions in Martian samples: Clues to early crustal development and the hydrosphere

    Get PDF
    Major questions about Mars that could be illuminated by examining fluid inclusions in Martian samples include: (1) the nature, extent and timing of development (and decline) of the hydrosphere that existed on the planet; and (2) the evolution of the crust. Fluid inclusion analyses of appropriate samples could provide critical data to use in comparison with data derived from analogous terrestrial studies. For this study, sample handling and return restrictions are unlikely to be as restrictive as the needs of other investigators. The main constraint is that the samples not be subjected to excessively high temperatures. An aqueous fluid inclusion trapped at elevated pressure and temperature will commonly consist of liquid water and water vapor at room temperature. Heating (such as is done in the laboratory to fix P-V-T data for the inclusion) results in moderate pressure increases up to the liquid-vapor homogenization temperature followed by a sharp increase in pressure with continued heating because the inclusion is effectively a fixed volume system. This increased pressure can rupture the inclusion; precise limits are dependent on size, shape, and composition as well as the host material

    Investigation of the role of polysaccharide in the dolomite growth at low temperature by using atomistic simulations

    Full text link
    Dehydration of water from surface Mg2+ is most likely the rate-limiting step in the dolomite growth at low temperature. Here, we investigate the role of polysaccharide in this step using classical molecular dynamics (MD) calculations. Free energy (potential of mean force, PMF) calculations have been performed for water molecules leaving the first two hydration layers above the dolomite (104) surface under the following three conditions: without catalyst, with monosaccharide (mannose) and with oligosaccharide (three units of mannose). MD simulations reveal that there is no obvious effect of monosaccharide in lowering the dehydration barrier for surface Mg2+. However, we found that there are metastable configurations of oligosaccharide, which can decrease the dehydration barrier of surface Mg2+ by about 0.7-1.1 kcal/mol. In these configurations, the molecule lies relatively flat on the surface and forms a bridge shape. The hydrophobic space near the surface created by the non-polar -CH groups of the oligosaccharide in the bridge conformation is the reason for the observed reduction of dehydration barrier

    Generation of mice with a conditional allele of the p120 Ras GTPase-activating protein

    Full text link
    p120 Ras GTPase-activating protein (RasGAP) encoded by the rasa1 gene in mice is a prototypical member of the RasGAP family of proteins involved in negative-regulation of the p21 Ras proto-oncogene. RasGAP has been implicated in signal transduction through a number of cell surface receptors. In humans, inactivating mutations in the coding region of the RASA1 gene cause capillary malformation arteriovenous malformation. In mice, generalized disruption of the rasa1 gene results in early embryonic lethality associated with defective vasculogenesis and increased apoptosis of neuronal cells. The early lethality in this mouse model precludes its use to further study the importance of RasGAP as a regulator of cell function. Therefore, to circumvent this problem, we have generated a conditional rasa1 knockout mouse. In this mouse, an exon that encodes a part of the RasGAP protein essential for catalytic activity has been flanked by loxP recognition sites. With the use of different constitutive and inducible Cre transgenic mouse lines, we show that deletion of this exon from the rasa1 locus results in effective loss of expression of catalytically-active RasGAP from a variety of adult tissues. The conditional rasa1 mouse will be useful for the analysis of the role of RasGAP in mature cell types. genesis 45:762–767, 2007. © 2007 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/57536/1/20354_ftp.pd

    Hierarchical Shrinkage Priors for Regression Models

    Get PDF
    In some linear models, such as those with interactions, it is natural to include the relationship between the regression coefficients in the analysis. In this paper, we consider how robust hierarchical continuous prior distributions can be used to express dependence between the size but not the sign of the regression coefficients. For example, to include ideas of heredity in the analysis of linear models with interactions. We develop a simple method for controlling the shrinkage of regression effects to zero at different levels of the hierarchy by considering the behaviour of the continuous prior at zero. Applications to linear models with interactions and generalized additive models are used as illustrations

    Handling qualities of a wide-body transport airplane utilizing Pitch Active Control Systems (PACS) for relaxed static stability application

    Get PDF
    Piloted simulation studies have been conducted to evaluate the effectiveness of two pitch active control systems (PACS) on the flying qualities of a wide-body transport airplane when operating at negative static margins. These two pitch active control systems consisted of a simple 'near-term' PACS and a more complex 'advanced' PACS. Eight different flight conditions, representing the entire flight envelope, were evaluated with emphasis on the cruise flight conditions. These studies were made utilizing the Langley Visual/Motion Simulator (VMS) which has six degrees of freedom. The simulation tests indicated that (1) the flying qualities of the baseline aircraft (PACS off) for the cruise and other high-speed flight conditions were unacceptable at center-of-gravity positions aft of the neutral static stability point; (2) within the linear static stability flight envelope, the near-term PACS provided acceptable flying qualities for static stabilty margins to -3 percent; and (3) with the advanced PACS operative, the flying qualities were demonstrated to be good (satisfactory to very acceptable) for static stabilty margins to -20 percent

    Stability of Relativistic Matter With Magnetic Fields

    Full text link
    Stability of matter with Coulomb forces has been proved for non-relativistic dynamics, including arbitrarily large magnetic fields, and for relativistic dynamics without magnetic fields. In both cases stability requires that the fine structure constant alpha be not too large. It was unclear what would happen for both relativistic dynamics and magnetic fields, or even how to formulate the problem clearly. We show that the use of the Dirac operator allows both effects, provided the filled negative energy `sea' is defined properly. The use of the free Dirac operator to define the negative levels leads to catastrophe for any alpha, but the use of the Dirac operator with magnetic field leads to stability.Comment: This is an announcement of the work in cond-mat/9610195 (LaTeX
    • …
    corecore