321 research outputs found

    Land Grant Application- Davenport, Philip (Augusta)

    Get PDF
    Land grant application submitted to the Maine Land Office on behalf of Philip Davenport for service in the Revolutionary War, by their widow Jerusha.https://digitalmaine.com/revolutionary_war_me_land_office/1232/thumbnail.jp

    Harmonisation of Chalk and Cheese

    Get PDF
    This is a response to Towards Harmonisation of the Construction Industry Security of Payment Legislation: A consideration of the success afforded by the East and West Coast Models in Australia by Jeremy Coggins, Robert Fenwick Elliott and Matthew Bell. Towards Harmonisation is based upon the false premise that the objectives of the East Coast and West Coast models are the same. They are chalk and cheese. Each serves a valuable purpose. Each jurisdiction needs both models.  A model for a dual process incorporating both the East Coast and the West Coast models will be found in Davenport (2007)

    Practical Guide to Engineering and Construction Contracts

    Get PDF
    Book ReviewPractical Guide to Engineering and Construction Contracts Philip Loots and Donald Charrett, CCH Australia Limited, Sydney 2009, 439 pages plus index, ISBN 9781921593529 (hardback) AUD 9

    Data Systems Dynamic Simulator

    Get PDF
    The Data System Dynamic Simulator (DSDS) is a discrete event simulation tool. It was developed for NASA for the specific purpose of evaluating candidate architectures for data systems of the Space Station era. DSDS provides three methods for meeting this requirement. First, the user has access to a library of standard pre-programmed elements. These elements represent tailorable components of NASA data systems and can be connected in any logical manner. Secondly, DSDS supports the development of additional elements. This allows the more sophisticated DSDS user the option of extending the standard element set. Thirdly, DSDS supports the use of data streams simulation. Data streams is the name given to a technique that ignores packet boundaries, but is sensitive to rate changes. Because rate changes are rare compared to packet arrivals in a typical NASA data system, data stream simulations require a fraction of the CPU run time. Additionally, the data stream technique is considerably more accurate than another commonly-used optimization technique

    Applying Ensemble Neural Networks to an Inverse Problem Solution to Prosthetic Socket Pressure Measurement

    Get PDF
    Ensemble neural networks are commonly used as a method to boost performance of artificial intelligence applications. By collating the response of multiple networks with differences in composition or training and hence a range of estimation error, an overall improvement in the appraisal of new problem data can be made. In this work, artificial neural networks are used as an inverse-problem solver to calculate the internal distribution of pressures on a lower limb prosthetic socket using information on the deformation of the external surface of the device. Investigation into the impact of noise injection was studied by changing the maximum noise alteration parameter and the differences in network composition by altering the variance around this maximum noise value. Results indicate that use of ensembles of networks provides a meaningful improvement in overall performance. RMS error expressed as a percentage of the total applied load was 3.86% for the best performing ensemble, compared to 5.32% for the mean performance of the networks making up that ensemble. Although noise injection resulted in an improvement in typical network estimates of load distribution, ensembles performed better with low noise and low variance between network training patterns. These results mean that ensembles have been implemented in the research tool under developmen

    Monitoring the suitability of the fit of a lower-limb prosthetic socket using artificial neural network in commonly encountered walking conditions

    Get PDF
    Prosthetic sockets are still routinely designed without the aid of quantitative measurement, relying instead on the experience and skill of clinicians. Sockets remain the most common cause for complaint regarding the suitability of a prosthesis, and poor pressure distribution is implicated in many forms of unacceptable care outcomes. Monitoring pressure distribution has been effectively restricted to laboratory settings, and only limited work has examined conditions other than flat walking. In this work, a transtibial amputee completed static and dynamic tasks on flat ground, on slopes and with changes to prosthetic materials and alignment. This was achieved using a set of wireless measurement nodes and custom LabView and MATLAB code, using external strain measurements and a neural network to understand the internal pressure distribution. Future work will focus on modifying the software to be more user-friendly for a clinical operator, and in simplifying the required hardware. Although the system in its current form facilitated the desired measurements effectively, it required engineering support to function accurately. Improving the reliability and stability of the system will be necessary before routine use is possible

    Real-time interfacial load monitoring and tracking between the composite prosthetic socket and residual limb for below-knee amputees

    Get PDF
    © 15th International Conference on Condition Monitoring and Machinery Failure Prevention Technologies, CM 2018/MFPT 2018. All rights reserved. Real time-in-service interfacial load measurement and load tracking between prosthetic socket and the residual limb is of paramount importance. Noroozi et al proposed an inverse method approach using ANN to predict the magnitude and location of the interfacial load between prosthetic socket and the residual limb from the structural response of the socket to the normal internal load due to contact between the stump and the socket. Here the socket mechanical properties act as the transfer function between the forces acting normal to the internal surface of the socket forces and the resultant strains generated on the external surface of the socket. Using this method, it is possible to use the external strains to predict the internal load that caused the strain. With this method, there will be no need for the socket or tissue properties or the exact socket thickness. Using this technique, one can simply transform everyone's socket into their own dedicated transducer suitable for measuring, tracking and monitoring the resultant interfacial load on the internal surfaces of the socket for that user. Currently, all socket interfacial load measurement systems require tactile sensors which require the prior knowledge of the location of the contact points. This makes it impossible for the tactile sensor to predict the magnitude and location of high-pressure points. Alternative tools are tactile sensor placed in liners or drilled and mounted through the socket wall, or total surface bearing ones that are subjective and not suitable for everyday use. For that reason, they require the knowledge of the contact point or areas of high load intensities. The proposed new system requires none of the above constraints and due to its unique design, it is immune to the changes in the overall boundary conditions, making it an invaluable clinical system

    Validation of joint angle measurements: comparison of a novel low cost marker-less system with an industry standard marker-based system

    Get PDF
    Human motion tracking is widely used for assessment of movement dysfunction in orthopaedic patients. Currently, most clinical motion analysis centres use marker based three-dimensional (3D) systems as they are deemed to be the most accurate method. However, due to space, costs and logistics they are not available in many clinical settings. This study compared joint angles measured in functional tests using the novel low-cost Microsoft Kinect Perfect Phorm system with the established marker based Nexus VICON system. When measuring right and left knee flexion, the average difference between the VICON and Kinect Perfect Phorm measurement was 13.2%, with a SD of 19.6. Both overestimation and underestimation of the joint angle was recorded in different participants. Although the average percentage difference during hip abduction tests was lower at -3.9%, the range of error was far greater (SD=75). From this, it can be concluded that the level of accuracy presented in the new low cost Kinect Perfect Phorm system is not yet suitable for clinical assessments. However, for general tests of performance, and for tracking cases where absolute accuracy is less critical, future versions of this software may have a place

    Performance evaluation of an ensemble neural network system of estimating transtibial prosthetic socket pressures during standing, walking and condition perturbation.

    Get PDF
    Providing suitable prosthetic sockets for the restoration of function following lower-limb amputation remains a significant issue in medical device prescription. Poorly designed sockets are associated with discomfort, poor quality function and injury, with quality linked to the capability of the socket to adequately distribute the forces from ambulation. Despite this link, systems of measuring stump-socket interface pressure have not seen use in clinical practice, in part due to limitations in functional performance. A technique using neural networks to relate external socket deformation to the internal pressure distribution was recently developed: this method has several advantages over contemporary systems but had not been evaluated in detail in dynamic situations. A wireless system estimating transtibial socket pressure distribution was produced. When supplied with simulated socket loads, an estimate produced from a group of networks (an ensemble) demonstrated improved accuracy and reduced variance. Work was undertaken to identify optimal design in terms of input data conditioning and post-estimate correction. This demonstrated that these can provide significant accuracy and reliability improvements. Measurements were taken from two transtibial amputees during standing, walking, walking on slopes, walking with coronal plane misalignment and walking with an alternative socket liner. An evaluation of the contributions to variance confirmed the applicability of ensembles in this application. The system proved capable recording significant differences in socket load distribution between different prosthesis configurations. For future investigation, this demonstrates that the technique is sensitive enough to examine the changes in the application of force which are present during daily use, device set-up and common fault conditions. The results of this study support further development of the practical aspects of the system, future work in producing a realistic load training system and extrapolation of results to other sockets, structures and engineering problems
    corecore