19 research outputs found
Interaction of solar inertial modes with turbulent convection. A 2D model for the excitation of linearly stable modes
Inertial modes have been observed on the Sun at low longitudinal wavenumbers.
These modes probe the dynamics and structure of the solar convection zone down
to the tachocline. While linear analysis allows the complex eigenfrequencies
and eigenfunctions of these modes to be computed, it gives no information about
their excitation nor about their amplitudes.
We tested the hypothesis that solar inertial modes are stochastically excited
by the turbulent motions entailed by convection. We have developed a
theoretical formalism where the turbulent velocity fluctuations provide the
mechanical work necessary to excite the modes. The modes are described by means
of a 2D linear wave equation, relevant for the quasi-toroidal modes observed on
the Sun, with a source term, under the beta plane approximation. Latitudinal
differential rotation is included in the form of a parabolic profile that
approximates the solar differential rotation at low and mid latitudes.
We obtain synthetic power spectra for the wave's latitudinal velocity,
longitudinal velocity, and radial vorticity, with azimuthal orders between 1
and 20. The synthetic power spectra contain the classical equatorial Rossby
modes, as well as a rich spectrum of additional modes. The mode amplitudes are
found to be of the same order of magnitude as observed on the Sun (~ 1 m/s).
There is a qualitative transition between low and high azimuthal orders: the
power spectra for m < 5 show modes that are clearly resolved in frequency
space, while the power spectra for m > 5 display regions of excess power that
consist of many overlapping modes.
The general agreement between the predicted and observed inertial mode
amplitudes supports the assumption of stochastic excitation by turbulent
convection. Our work shows that the power spectra are not easily separable into
individual modes, thus complicated the interpretation of the observations.Comment: 19 pages, accepted for publication in Astronomy & Astrophysic
Etude du couplage entre convection turbulente et oscillations de type solaire
Asteroseismology has revolutionised our understanding of stellar interiors, through the observations of oscillations on the surface of stars. In solar-like oscillators, which exhibit a convective envelope, the turbulent motions caused by convection have a substantial impact on the properties of the acoustic modes, whether on their frequencies or their amplitude. This impact results from a turbulence/oscillation coupling, which must therefore be understood and realistically modelled in order to allow for accurate seismic diagnosis. In turn, this coupling offers a way to constrain the little-understood properties of convection using the observed acoustic mode properties. This last point forms the overarching motivation behind the work presented in this thesis.The first part of this thesis focuses on the asymmetry displayed by the line profiles of solar-like oscillations, which carries the signature of the localisation of the driving source close to the surface of the star. In this context, I developed a formalism designed to give quantitative predictions for solar-like mode asymmetry, and to directly relate the observed asymmetries to the underlying properties of turbulence in this region. Applying this formalism to the solar case allowed me to successfully reproduce the observations throughout the entire p-mode spectrum for spectroscopic measurements, as well as in the low-frequency part of the spectrum for photometric measurements. In particular, it led me to the determination of the sign of the asymmetry depending on the stochastic excitation occurring above or beneath the photosphere. It also allowed be to shed a new light upon the issue of asymmetry reversal between the velocity and intensity measurements.In a second part, I interested myself with the modelling of the turbulence/oscillation modelling more generally. I investigated Lagrangian stochastic models of turbulence as an alternative way, compared to more traditional approaches, to model the coupling between turbulent convection and solar-like oscillations. First, a linear perturbative treatment of this class of models led me to establish a wave equation which, by construction, contains a stochastic part representing the impact of turbulence on the modes. This stochastic wave equation includes the effect of turbulence, and therefore the effect of the coupling with oscillations, in a consistent way, while allowing for the introduction of a realistic model of turbulence, taking into account the large range of time and spatial scales characterising stellar turbulent convection. This formalism then allowed me to simultaneously build physically-grounded prescriptions for the driving and damping of the modes, as well as for the modal part of the surface effects. In parallel, I developed a more direct numerical implementation of Lagrangian stochastic models, which allows, in conjunction with my analytical formalism, to explore the impact of the physical parameters of turbulent convection on the observed properties of the solar-like modes. I propose a test case where exact analytical results can be derived, and the close agreement reached between those and numerical results validates this implementation.LâastĂ©rosismologie a rĂ©volutionnĂ© notre comprĂ©hension des intĂ©rieurs stellaires, grĂące Ă lâobservation des oscillations Ă la surface des Ă©toiles. En ce qui concerne les oscillateurs de type solaire, qui possĂšdent une enveloppe convective, les mouvements turbulents dus Ă la convection ont un impact important sur les propriĂ©tĂ©s des modes acoustiques, tant du point de vue de leur frĂ©quence que de leur amplitude. Cet impact rĂ©sulte dâun couplage entre convection et oscillations, qui doit donc ĂȘtre compris et correctement modĂ©lisĂ© pour permettre des diagnostics sismiques fiables dans ces Ă©toiles. En retour, ce couplage offre lâopportunitĂ© dâutiliser les propriĂ©tĂ©s observĂ©es des modes pour contraindre la convection stellaire â dont les propriĂ©tĂ©s restent encore relativement mal comprises Ă ce jour. Câest ce dernier point qui constitue la motivation sous-tendant le travail prĂ©sentĂ© dans cette thĂšse.La premiĂšre partie de cette thĂšse se concentre sur lâasymĂ©trie exhibĂ©e par les profils des modes dans le spectre des oscillateurs de type solaire, qui porte la signature de la localisation de leur source dâexcitation proche de la surface de lâĂ©toile. Dans ce contexte, jâai dĂ©veloppĂ© un formalisme conçu pour fournir des prĂ©dictions quantitatives concernant ces asymĂ©tries, mais Ă©galement pour relier directement les asymĂ©tries observĂ©es aux propriĂ©tĂ©s sous-jacentes de la convection turbulente dans cette rĂ©gion. Lâapplication de ce formalisme au cas du Soleil mâa permis de reproduire les observations Ă travers tout le spectre des modes acoustiques pour les mesures spectroscopiques, ainsi que pour les modes acoustiques de basse frĂ©quence pour les mesures photomĂ©triques. En particulier, elle mâa permis de dĂ©terminer la dĂ©pendance du signe de lâasymĂ©trie en fonction de la position de la source relativement Ă la photosphĂšre, ainsi que dâapporter un Ă©clairage nouveau sur la question de lâinversion dâasymĂ©trie entre les observations effectuĂ©es en vitesse et en intensitĂ©.Dans une seconde partie, je me suis penchĂ© sur la question de la modĂ©lisation du couplage turbulence/oscillation de maniĂšre plus gĂ©nĂ©rale. Jây examine les modĂšles de turbulence Lagrangiens stochastiques en tant quâalternative aux approches traditionnelles pour le traitement du couplage entre convection turbulente et oscillations de type solaire. PremiĂšrement, un traitement perturbatif linĂ©aire de ce type de modĂšle mâa permis dâexhiber une Ă©quation dâonde possĂ©dant, par construction, un caractĂšre stochastique reprĂ©sentant lâimpact de la turbulence sur les modes. Cette Ă©quation dâonde stochastique prĂ©sente lâavantage dâinclure dĂšs le dĂ©but lâeffet de la turbulence, et par suite celui du couplage, de maniĂšre cohĂ©rente, tout en permettant lâintroduction dâun modĂšle de turbulence rĂ©aliste, et prenant en compte le large Ă©ventail dâĂ©chelles temporelles et spatiales caractĂ©risant la convection turbulente stellaire. Ce formalisme mâa ensuite permis de construire une prescription simultanĂ©e, sur la base de relations de fermeture physique, pour le taux dâexcitation et dâamortissement des modes acoustiques, mais Ă©galement pour la partie modale des effets de surface. En parallĂšle, jâai dĂ©veloppĂ© une implĂ©mentation numĂ©rique plus directe des modĂšles Lagrangiens stochastiques, qui permet, en conjonction avec mon formalisme analytique, dâexplorer lâimpact des paramĂštres physiques contrĂŽlant la convection turbulente sur les propriĂ©tĂ©s observĂ©es des modes de type solaire. Le trĂšs bon accord obtenu en comparant les rĂ©sultats numĂ©riques Ă un cas test dans le cadre duquel des rĂ©sultats analytiques exacts peuvent ĂȘtre Ă©tablis mâa permis de valider cette implĂ©mentation
Study of the coupling between turbulent convection and solar-like oscillations
LâastĂ©rosismologie a rĂ©volutionnĂ© notre comprĂ©hension des intĂ©rieurs stellaires, grĂące Ă lâobservation des oscillations Ă la surface des Ă©toiles. En ce qui concerne les oscillateurs de type solaire, qui possĂšdent une enveloppe convective, les mouvements turbulents dus Ă la convection ont un impact important sur les propriĂ©tĂ©s des modes acoustiques, tant du point de vue de leur frĂ©quence que de leur amplitude. Cet impact rĂ©sulte dâun couplage entre convection et oscillations, qui doit donc ĂȘtre compris et correctement modĂ©lisĂ© pour permettre des diagnostics sismiques fiables dans ces Ă©toiles. En retour, ce couplage offre lâopportunitĂ© dâutiliser les propriĂ©tĂ©s observĂ©es des modes pour contraindre la convection stellaire â dont les propriĂ©tĂ©s restent encore relativement mal comprises Ă ce jour. Câest ce dernier point qui constitue la motivation sous-tendant le travail prĂ©sentĂ© dans cette thĂšse.La premiĂšre partie de cette thĂšse se concentre sur lâasymĂ©trie exhibĂ©e par les profils des modes dans le spectre des oscillateurs de type solaire, qui porte la signature de la localisation de leur source dâexcitation proche de la surface de lâĂ©toile. Dans ce contexte, jâai dĂ©veloppĂ© un formalisme conçu pour fournir des prĂ©dictions quantitatives concernant ces asymĂ©tries, mais Ă©galement pour relier directement les asymĂ©tries observĂ©es aux propriĂ©tĂ©s sous-jacentes de la convection turbulente dans cette rĂ©gion. Lâapplication de ce formalisme au cas du Soleil mâa permis de reproduire les observations Ă travers tout le spectre des modes acoustiques pour les mesures spectroscopiques, ainsi que pour les modes acoustiques de basse frĂ©quence pour les mesures photomĂ©triques. En particulier, elle mâa permis de dĂ©terminer la dĂ©pendance du signe de lâasymĂ©trie en fonction de la position de la source relativement Ă la photosphĂšre, ainsi que dâapporter un Ă©clairage nouveau sur la question de lâinversion dâasymĂ©trie entre les observations effectuĂ©es en vitesse et en intensitĂ©.Dans une seconde partie, je me suis penchĂ© sur la question de la modĂ©lisation du couplage turbulence/oscillation de maniĂšre plus gĂ©nĂ©rale. Jây examine les modĂšles de turbulence Lagrangiens stochastiques en tant quâalternative aux approches traditionnelles pour le traitement du couplage entre convection turbulente et oscillations de type solaire. PremiĂšrement, un traitement perturbatif linĂ©aire de ce type de modĂšle mâa permis dâexhiber une Ă©quation dâonde possĂ©dant, par construction, un caractĂšre stochastique reprĂ©sentant lâimpact de la turbulence sur les modes. Cette Ă©quation dâonde stochastique prĂ©sente lâavantage dâinclure dĂšs le dĂ©but lâeffet de la turbulence, et par suite celui du couplage, de maniĂšre cohĂ©rente, tout en permettant lâintroduction dâun modĂšle de turbulence rĂ©aliste, et prenant en compte le large Ă©ventail dâĂ©chelles temporelles et spatiales caractĂ©risant la convection turbulente stellaire. Ce formalisme mâa ensuite permis de construire une prescription simultanĂ©e, sur la base de relations de fermeture physique, pour le taux dâexcitation et dâamortissement des modes acoustiques, mais Ă©galement pour la partie modale des effets de surface. En parallĂšle, jâai dĂ©veloppĂ© une implĂ©mentation numĂ©rique plus directe des modĂšles Lagrangiens stochastiques, qui permet, en conjonction avec mon formalisme analytique, dâexplorer lâimpact des paramĂštres physiques contrĂŽlant la convection turbulente sur les propriĂ©tĂ©s observĂ©es des modes de type solaire. Le trĂšs bon accord obtenu en comparant les rĂ©sultats numĂ©riques Ă un cas test dans le cadre duquel des rĂ©sultats analytiques exacts peuvent ĂȘtre Ă©tablis mâa permis de valider cette implĂ©mentation.Asteroseismology has revolutionised our understanding of stellar interiors, through the observations of oscillations on the surface of stars. In solar-like oscillators, which exhibit a convective envelope, the turbulent motions caused by convection have a substantial impact on the properties of the acoustic modes, whether on their frequencies or their amplitude. This impact results from a turbulence/oscillation coupling, which must therefore be understood and realistically modelled in order to allow for accurate seismic diagnosis. In turn, this coupling offers a way to constrain the little-understood properties of convection using the observed acoustic mode properties. This last point forms the overarching motivation behind the work presented in this thesis.The first part of this thesis focuses on the asymmetry displayed by the line profiles of solar-like oscillations, which carries the signature of the localisation of the driving source close to the surface of the star. In this context, I developed a formalism designed to give quantitative predictions for solar-like mode asymmetry, and to directly relate the observed asymmetries to the underlying properties of turbulence in this region. Applying this formalism to the solar case allowed me to successfully reproduce the observations throughout the entire p-mode spectrum for spectroscopic measurements, as well as in the low-frequency part of the spectrum for photometric measurements. In particular, it led me to the determination of the sign of the asymmetry depending on the stochastic excitation occurring above or beneath the photosphere. It also allowed be to shed a new light upon the issue of asymmetry reversal between the velocity and intensity measurements.In a second part, I interested myself with the modelling of the turbulence/oscillation modelling more generally. I investigated Lagrangian stochastic models of turbulence as an alternative way, compared to more traditional approaches, to model the coupling between turbulent convection and solar-like oscillations. First, a linear perturbative treatment of this class of models led me to establish a wave equation which, by construction, contains a stochastic part representing the impact of turbulence on the modes. This stochastic wave equation includes the effect of turbulence, and therefore the effect of the coupling with oscillations, in a consistent way, while allowing for the introduction of a realistic model of turbulence, taking into account the large range of time and spatial scales characterising stellar turbulent convection. This formalism then allowed me to simultaneously build physically-grounded prescriptions for the driving and damping of the modes, as well as for the modal part of the surface effects. In parallel, I developed a more direct numerical implementation of Lagrangian stochastic models, which allows, in conjunction with my analytical formalism, to explore the impact of the physical parameters of turbulent convection on the observed properties of the solar-like modes. I propose a test case where exact analytical results can be derived, and the close agreement reached between those and numerical results validates this implementation
Etude du couplage entre convection turbulente et oscillations de type solaire
Asteroseismology has revolutionised our understanding of stellar interiors, through the observations of oscillations on the surface of stars. In solar-like oscillators, which exhibit a convective envelope, the turbulent motions caused by convection have a substantial impact on the properties of the acoustic modes, whether on their frequencies or their amplitude. This impact results from a turbulence/oscillation coupling, which must therefore be understood and realistically modelled in order to allow for accurate seismic diagnosis. In turn, this coupling offers a way to constrain the little-understood properties of convection using the observed acoustic mode properties. This last point forms the overarching motivation behind the work presented in this thesis.The first part of this thesis focuses on the asymmetry displayed by the line profiles of solar-like oscillations, which carries the signature of the localisation of the driving source close to the surface of the star. In this context, I developed a formalism designed to give quantitative predictions for solar-like mode asymmetry, and to directly relate the observed asymmetries to the underlying properties of turbulence in this region. Applying this formalism to the solar case allowed me to successfully reproduce the observations throughout the entire p-mode spectrum for spectroscopic measurements, as well as in the low-frequency part of the spectrum for photometric measurements. In particular, it led me to the determination of the sign of the asymmetry depending on the stochastic excitation occurring above or beneath the photosphere. It also allowed be to shed a new light upon the issue of asymmetry reversal between the velocity and intensity measurements.In a second part, I interested myself with the modelling of the turbulence/oscillation modelling more generally. I investigated Lagrangian stochastic models of turbulence as an alternative way, compared to more traditional approaches, to model the coupling between turbulent convection and solar-like oscillations. First, a linear perturbative treatment of this class of models led me to establish a wave equation which, by construction, contains a stochastic part representing the impact of turbulence on the modes. This stochastic wave equation includes the effect of turbulence, and therefore the effect of the coupling with oscillations, in a consistent way, while allowing for the introduction of a realistic model of turbulence, taking into account the large range of time and spatial scales characterising stellar turbulent convection. This formalism then allowed me to simultaneously build physically-grounded prescriptions for the driving and damping of the modes, as well as for the modal part of the surface effects. In parallel, I developed a more direct numerical implementation of Lagrangian stochastic models, which allows, in conjunction with my analytical formalism, to explore the impact of the physical parameters of turbulent convection on the observed properties of the solar-like modes. I propose a test case where exact analytical results can be derived, and the close agreement reached between those and numerical results validates this implementation.LâastĂ©rosismologie a rĂ©volutionnĂ© notre comprĂ©hension des intĂ©rieurs stellaires, grĂące Ă lâobservation des oscillations Ă la surface des Ă©toiles. En ce qui concerne les oscillateurs de type solaire, qui possĂšdent une enveloppe convective, les mouvements turbulents dus Ă la convection ont un impact important sur les propriĂ©tĂ©s des modes acoustiques, tant du point de vue de leur frĂ©quence que de leur amplitude. Cet impact rĂ©sulte dâun couplage entre convection et oscillations, qui doit donc ĂȘtre compris et correctement modĂ©lisĂ© pour permettre des diagnostics sismiques fiables dans ces Ă©toiles. En retour, ce couplage offre lâopportunitĂ© dâutiliser les propriĂ©tĂ©s observĂ©es des modes pour contraindre la convection stellaire â dont les propriĂ©tĂ©s restent encore relativement mal comprises Ă ce jour. Câest ce dernier point qui constitue la motivation sous-tendant le travail prĂ©sentĂ© dans cette thĂšse.La premiĂšre partie de cette thĂšse se concentre sur lâasymĂ©trie exhibĂ©e par les profils des modes dans le spectre des oscillateurs de type solaire, qui porte la signature de la localisation de leur source dâexcitation proche de la surface de lâĂ©toile. Dans ce contexte, jâai dĂ©veloppĂ© un formalisme conçu pour fournir des prĂ©dictions quantitatives concernant ces asymĂ©tries, mais Ă©galement pour relier directement les asymĂ©tries observĂ©es aux propriĂ©tĂ©s sous-jacentes de la convection turbulente dans cette rĂ©gion. Lâapplication de ce formalisme au cas du Soleil mâa permis de reproduire les observations Ă travers tout le spectre des modes acoustiques pour les mesures spectroscopiques, ainsi que pour les modes acoustiques de basse frĂ©quence pour les mesures photomĂ©triques. En particulier, elle mâa permis de dĂ©terminer la dĂ©pendance du signe de lâasymĂ©trie en fonction de la position de la source relativement Ă la photosphĂšre, ainsi que dâapporter un Ă©clairage nouveau sur la question de lâinversion dâasymĂ©trie entre les observations effectuĂ©es en vitesse et en intensitĂ©.Dans une seconde partie, je me suis penchĂ© sur la question de la modĂ©lisation du couplage turbulence/oscillation de maniĂšre plus gĂ©nĂ©rale. Jây examine les modĂšles de turbulence Lagrangiens stochastiques en tant quâalternative aux approches traditionnelles pour le traitement du couplage entre convection turbulente et oscillations de type solaire. PremiĂšrement, un traitement perturbatif linĂ©aire de ce type de modĂšle mâa permis dâexhiber une Ă©quation dâonde possĂ©dant, par construction, un caractĂšre stochastique reprĂ©sentant lâimpact de la turbulence sur les modes. Cette Ă©quation dâonde stochastique prĂ©sente lâavantage dâinclure dĂšs le dĂ©but lâeffet de la turbulence, et par suite celui du couplage, de maniĂšre cohĂ©rente, tout en permettant lâintroduction dâun modĂšle de turbulence rĂ©aliste, et prenant en compte le large Ă©ventail dâĂ©chelles temporelles et spatiales caractĂ©risant la convection turbulente stellaire. Ce formalisme mâa ensuite permis de construire une prescription simultanĂ©e, sur la base de relations de fermeture physique, pour le taux dâexcitation et dâamortissement des modes acoustiques, mais Ă©galement pour la partie modale des effets de surface. En parallĂšle, jâai dĂ©veloppĂ© une implĂ©mentation numĂ©rique plus directe des modĂšles Lagrangiens stochastiques, qui permet, en conjonction avec mon formalisme analytique, dâexplorer lâimpact des paramĂštres physiques contrĂŽlant la convection turbulente sur les propriĂ©tĂ©s observĂ©es des modes de type solaire. Le trĂšs bon accord obtenu en comparant les rĂ©sultats numĂ©riques Ă un cas test dans le cadre duquel des rĂ©sultats analytiques exacts peuvent ĂȘtre Ă©tablis mâa permis de valider cette implĂ©mentation
Etude du couplage entre convection turbulente et oscillations de type solaire
Asteroseismology has revolutionised our understanding of stellar interiors, through the observations of oscillations on the surface of stars. In solar-like oscillators, which exhibit a convective envelope, the turbulent motions caused by convection have a substantial impact on the properties of the acoustic modes, whether on their frequencies or their amplitude. This impact results from a turbulence/oscillation coupling, which must therefore be understood and realistically modelled in order to allow for accurate seismic diagnosis. In turn, this coupling offers a way to constrain the little-understood properties of convection using the observed acoustic mode properties. This last point forms the overarching motivation behind the work presented in this thesis.The first part of this thesis focuses on the asymmetry displayed by the line profiles of solar-like oscillations, which carries the signature of the localisation of the driving source close to the surface of the star. In this context, I developed a formalism designed to give quantitative predictions for solar-like mode asymmetry, and to directly relate the observed asymmetries to the underlying properties of turbulence in this region. Applying this formalism to the solar case allowed me to successfully reproduce the observations throughout the entire p-mode spectrum for spectroscopic measurements, as well as in the low-frequency part of the spectrum for photometric measurements. In particular, it led me to the determination of the sign of the asymmetry depending on the stochastic excitation occurring above or beneath the photosphere. It also allowed be to shed a new light upon the issue of asymmetry reversal between the velocity and intensity measurements.In a second part, I interested myself with the modelling of the turbulence/oscillation modelling more generally. I investigated Lagrangian stochastic models of turbulence as an alternative way, compared to more traditional approaches, to model the coupling between turbulent convection and solar-like oscillations. First, a linear perturbative treatment of this class of models led me to establish a wave equation which, by construction, contains a stochastic part representing the impact of turbulence on the modes. This stochastic wave equation includes the effect of turbulence, and therefore the effect of the coupling with oscillations, in a consistent way, while allowing for the introduction of a realistic model of turbulence, taking into account the large range of time and spatial scales characterising stellar turbulent convection. This formalism then allowed me to simultaneously build physically-grounded prescriptions for the driving and damping of the modes, as well as for the modal part of the surface effects. In parallel, I developed a more direct numerical implementation of Lagrangian stochastic models, which allows, in conjunction with my analytical formalism, to explore the impact of the physical parameters of turbulent convection on the observed properties of the solar-like modes. I propose a test case where exact analytical results can be derived, and the close agreement reached between those and numerical results validates this implementation.LâastĂ©rosismologie a rĂ©volutionnĂ© notre comprĂ©hension des intĂ©rieurs stellaires, grĂące Ă lâobservation des oscillations Ă la surface des Ă©toiles. En ce qui concerne les oscillateurs de type solaire, qui possĂšdent une enveloppe convective, les mouvements turbulents dus Ă la convection ont un impact important sur les propriĂ©tĂ©s des modes acoustiques, tant du point de vue de leur frĂ©quence que de leur amplitude. Cet impact rĂ©sulte dâun couplage entre convection et oscillations, qui doit donc ĂȘtre compris et correctement modĂ©lisĂ© pour permettre des diagnostics sismiques fiables dans ces Ă©toiles. En retour, ce couplage offre lâopportunitĂ© dâutiliser les propriĂ©tĂ©s observĂ©es des modes pour contraindre la convection stellaire â dont les propriĂ©tĂ©s restent encore relativement mal comprises Ă ce jour. Câest ce dernier point qui constitue la motivation sous-tendant le travail prĂ©sentĂ© dans cette thĂšse.La premiĂšre partie de cette thĂšse se concentre sur lâasymĂ©trie exhibĂ©e par les profils des modes dans le spectre des oscillateurs de type solaire, qui porte la signature de la localisation de leur source dâexcitation proche de la surface de lâĂ©toile. Dans ce contexte, jâai dĂ©veloppĂ© un formalisme conçu pour fournir des prĂ©dictions quantitatives concernant ces asymĂ©tries, mais Ă©galement pour relier directement les asymĂ©tries observĂ©es aux propriĂ©tĂ©s sous-jacentes de la convection turbulente dans cette rĂ©gion. Lâapplication de ce formalisme au cas du Soleil mâa permis de reproduire les observations Ă travers tout le spectre des modes acoustiques pour les mesures spectroscopiques, ainsi que pour les modes acoustiques de basse frĂ©quence pour les mesures photomĂ©triques. En particulier, elle mâa permis de dĂ©terminer la dĂ©pendance du signe de lâasymĂ©trie en fonction de la position de la source relativement Ă la photosphĂšre, ainsi que dâapporter un Ă©clairage nouveau sur la question de lâinversion dâasymĂ©trie entre les observations effectuĂ©es en vitesse et en intensitĂ©.Dans une seconde partie, je me suis penchĂ© sur la question de la modĂ©lisation du couplage turbulence/oscillation de maniĂšre plus gĂ©nĂ©rale. Jây examine les modĂšles de turbulence Lagrangiens stochastiques en tant quâalternative aux approches traditionnelles pour le traitement du couplage entre convection turbulente et oscillations de type solaire. PremiĂšrement, un traitement perturbatif linĂ©aire de ce type de modĂšle mâa permis dâexhiber une Ă©quation dâonde possĂ©dant, par construction, un caractĂšre stochastique reprĂ©sentant lâimpact de la turbulence sur les modes. Cette Ă©quation dâonde stochastique prĂ©sente lâavantage dâinclure dĂšs le dĂ©but lâeffet de la turbulence, et par suite celui du couplage, de maniĂšre cohĂ©rente, tout en permettant lâintroduction dâun modĂšle de turbulence rĂ©aliste, et prenant en compte le large Ă©ventail dâĂ©chelles temporelles et spatiales caractĂ©risant la convection turbulente stellaire. Ce formalisme mâa ensuite permis de construire une prescription simultanĂ©e, sur la base de relations de fermeture physique, pour le taux dâexcitation et dâamortissement des modes acoustiques, mais Ă©galement pour la partie modale des effets de surface. En parallĂšle, jâai dĂ©veloppĂ© une implĂ©mentation numĂ©rique plus directe des modĂšles Lagrangiens stochastiques, qui permet, en conjonction avec mon formalisme analytique, dâexplorer lâimpact des paramĂštres physiques contrĂŽlant la convection turbulente sur les propriĂ©tĂ©s observĂ©es des modes de type solaire. Le trĂšs bon accord obtenu en comparant les rĂ©sultats numĂ©riques Ă un cas test dans le cadre duquel des rĂ©sultats analytiques exacts peuvent ĂȘtre Ă©tablis mâa permis de valider cette implĂ©mentation
Interaction of solar inertial modes with turbulent convection
Context. Inertial modes have been observed on the Sun at low longitudinal wavenumbers. These modes probe the dynamics and structure of the solar convective zone down to the tachocline. While linear analysis allows the complex eigenfrequencies and eigenfunctions of these modes to be computed, it gives no information about their excitation nor about their amplitudes.
Aims. We tested the hypothesis that solar inertial modes are stochastically excited by the turbulent motions entailed by convection. Unlike the acoustic modes, which are excited by vertical turbulent motions, the inertial modes are excited by the radial vorticity of the turbulent field.
Methods. We have developed a theoretical formalism where the turbulent velocity fluctuations provide the mechanical work necessary to excite the modes. The modes are described by means of a 2D linear wave equation with a source term, under the ÎČ plane approximation. This wave equation restrained to a spherical surface is relevant for the quasi-toroidal inertial modes that are observed on the Sun. Latitudinal differential rotation is included in the form of a parabolic profile that approximates the solar differential rotation at low and mid latitudes. The turbulent vorticity field underlying the source term is treated as an input to the model and is constrained by observations of the solar surface. The solution to the linear inhomogeneous wave equation is written in terms of a Green function, which is computed numerically.
Results. We obtain synthetic power spectra for the waveâs latitudinal velocity, longitudinal velocity, and radial vorticity, with azimuthal orders between 1 and 20. The synthetic power spectra contain the classical equatorial Rossby modes, as well as a rich spectrum of additional modes. The mode amplitudes are found to be of the same order of magnitude as observed on the Sun (âŒ1 m sâ1). There is a qualitative transition between low and high azimuthal orders: the power spectra for mââČâ5 show modes that are clearly resolved in frequency space, while the power spectra for mââłâ5 display regions of excess power that consist of many overlapping modes.
Conclusions. The general agreement between the predicted and observed inertial mode amplitudes supports the assumption of stochastic excitation by turbulent convection. Our work shows that the power spectra are not easily separable into individual modes, thus complicating the interpretation of the observations
Ătude du couplage entre convection turbulente et oscillations de type solaire
Asteroseismology has revolutionised our understanding of stellar interiors, through the observations of oscillations on the surface of stars. In solar-like oscillators, which exhibit a convective envelope, the turbulent motions caused by convection have a substantial impact on the properties of the acoustic modes, whether on their frequencies or their amplitude. This impact results from a turbulence/oscillation coupling, which must therefore be understood and realistically modelled in order to allow for accurate seismic diagnosis. In turn, this coupling offers a way to constrain the little-understood properties of convection using the observed acoustic mode properties. This last point forms the overarching motivation behind the work presented in this thesis.The first part of this thesis focuses on the asymmetry displayed by the line profiles of solar-like oscillations, which carries the signature of the localisation of the driving source close to the surface of the star. In this context, I developed a formalism designed to give quantitative predictions for solar-like mode asymmetry, and to directly relate the observed asymmetries to the underlying properties of turbulence in this region. Applying this formalism to the solar case allowed me to successfully reproduce the observations throughout the entire p-mode spectrum for spectroscopic measurements, as well as in the low-frequency part of the spectrum for photometric measurements. In particular, it led me to the determination of the sign of the asymmetry depending on the stochastic excitation occurring above or beneath the photosphere. It also allowed be to shed a new light upon the issue of asymmetry reversal between the velocity and intensity measurements.In a second part, I interested myself with the modelling of the turbulence/oscillation modelling more generally. I investigated Lagrangian stochastic models of turbulence as an alternative way, compared to more traditional approaches, to model the coupling between turbulent convection and solar-like oscillations. First, a linear perturbative treatment of this class of models led me to establish a wave equation which, by construction, contains a stochastic part representing the impact of turbulence on the modes. This stochastic wave equation includes the effect of turbulence, and therefore the effect of the coupling with oscillations, in a consistent way, while allowing for the introduction of a realistic model of turbulence, taking into account the large range of time and spatial scales characterising stellar turbulent convection. This formalism then allowed me to simultaneously build physically-grounded prescriptions for the driving and damping of the modes, as well as for the modal part of the surface effects. In parallel, I developed a more direct numerical implementation of Lagrangian stochastic models, which allows, in conjunction with my analytical formalism, to explore the impact of the physical parameters of turbulent convection on the observed properties of the solar-like modes. I propose a test case where exact analytical results can be derived, and the close agreement reached between those and numerical results validates this implementation.LâastĂ©rosismologie a rĂ©volutionnĂ© notre comprĂ©hension des intĂ©rieurs stellaires, grĂące Ă lâobservation des oscillations Ă la surface des Ă©toiles. En ce qui concerne les oscillateurs de type solaire, qui possĂšdent une enveloppe convective, les mouvements turbulents dus Ă la convection ont un impact important sur les propriĂ©tĂ©s des modes acoustiques, tant du point de vue de leur frĂ©quence que de leur amplitude. Cet impact rĂ©sulte dâun couplage entre convection et oscillations, qui doit donc ĂȘtre compris et correctement modĂ©lisĂ© pour permettre des diagnostics sismiques fiables dans ces Ă©toiles. En retour, ce couplage offre lâopportunitĂ© dâutiliser les propriĂ©tĂ©s observĂ©es des modes pour contraindre la convection stellaire â dont les propriĂ©tĂ©s restent encore relativement mal comprises Ă ce jour. Câest ce dernier point qui constitue la motivation sous-tendant le travail prĂ©sentĂ© dans cette thĂšse.La premiĂšre partie de cette thĂšse se concentre sur lâasymĂ©trie exhibĂ©e par les profils des modes dans le spectre des oscillateurs de type solaire, qui porte la signature de la localisation de leur source dâexcitation proche de la surface de lâĂ©toile. Dans ce contexte, jâai dĂ©veloppĂ© un formalisme conçu pour fournir des prĂ©dictions quantitatives concernant ces asymĂ©tries, mais Ă©galement pour relier directement les asymĂ©tries observĂ©es aux propriĂ©tĂ©s sous-jacentes de la convection turbulente dans cette rĂ©gion. Lâapplication de ce formalisme au cas du Soleil mâa permis de reproduire les observations Ă travers tout le spectre des modes acoustiques pour les mesures spectroscopiques, ainsi que pour les modes acoustiques de basse frĂ©quence pour les mesures photomĂ©triques. En particulier, elle mâa permis de dĂ©terminer la dĂ©pendance du signe de lâasymĂ©trie en fonction de la position de la source relativement Ă la photosphĂšre, ainsi que dâapporter un Ă©clairage nouveau sur la question de lâinversion dâasymĂ©trie entre les observations effectuĂ©es en vitesse et en intensitĂ©.Dans une seconde partie, je me suis penchĂ© sur la question de la modĂ©lisation du couplage turbulence/oscillation de maniĂšre plus gĂ©nĂ©rale. Jây examine les modĂšles de turbulence Lagrangiens stochastiques en tant quâalternative aux approches traditionnelles pour le traitement du couplage entre convection turbulente et oscillations de type solaire. PremiĂšrement, un traitement perturbatif linĂ©aire de ce type de modĂšle mâa permis dâexhiber une Ă©quation dâonde possĂ©dant, par construction, un caractĂšre stochastique reprĂ©sentant lâimpact de la turbulence sur les modes. Cette Ă©quation dâonde stochastique prĂ©sente lâavantage dâinclure dĂšs le dĂ©but lâeffet de la turbulence, et par suite celui du couplage, de maniĂšre cohĂ©rente, tout en permettant lâintroduction dâun modĂšle de turbulence rĂ©aliste, et prenant en compte le large Ă©ventail dâĂ©chelles temporelles et spatiales caractĂ©risant la convection turbulente stellaire. Ce formalisme mâa ensuite permis de construire une prescription simultanĂ©e, sur la base de relations de fermeture physique, pour le taux dâexcitation et dâamortissement des modes acoustiques, mais Ă©galement pour la partie modale des effets de surface. En parallĂšle, jâai dĂ©veloppĂ© une implĂ©mentation numĂ©rique plus directe des modĂšles Lagrangiens stochastiques, qui permet, en conjonction avec mon formalisme analytique, dâexplorer lâimpact des paramĂštres physiques contrĂŽlant la convection turbulente sur les propriĂ©tĂ©s observĂ©es des modes de type solaire. Le trĂšs bon accord obtenu en comparant les rĂ©sultats numĂ©riques Ă un cas test dans le cadre duquel des rĂ©sultats analytiques exacts peuvent ĂȘtre Ă©tablis mâa permis de valider cette implĂ©mentation
Magnetohydrodynamics of stably stratified regions in planets and stars
International audienceStably-stratified layers are present in stellar interiors (radiative zones) as well as planetary interiors (recent observations and theoretical studies of the Earth's magnetic field seem to indicate the presence of a thin, stably-stratified layer at the top of the liquid outer core). We present direct numerical simulations of this region, which is modeled as an ax-isymmetric spherical Couette flow for a stably-stratified fluid embedded in a dipolar magnetic field. For strong magnetic fields, a super-rotating shear layer, rotating nearly 40% faster than the inner region, is generated in the stably stratified region. In the Earth context, and contrary to what was previously believed, we show that this super-rotation may extend toward the Earth magnetostrophic regime if the density stratification is sufficiently large. The corresponding differential rotation triggers mag-netohydrodynamic instabilities and waves in the stratified region, which feature growth rates comparable to the observed timescale for geomag-netic secular variations and jerks. In the stellar context, we perform a linear analysis which shows that similar instabilities are likely to arise, and we argue that it may explain the observed magnetic desert among massive and intermediate mass stars
Coupling between turbulence and solar-like oscillations: A combined Lagrangian PDF/SPH approach. II. Mode driving, damping and modal surface effect
International audienceContext. The ever-increasing quality of asteroseismic measurements offers a unique opportunity to use the observed global acoustic modes to infer the physical properties of stellar interiors. In solar-like oscillators, the finite lifetime of the modes allows their amplitudes and linewidths to be estimated, which provide invaluable information on the highly turbulent motions at the top of the convective envelope. But exploiting these observables requires a realistic theoretical framework for the description of the turbulenceâoscillation coupling. Aims. The first paper of this series established a linear stochastic wave equation for solar-like p -modes, correctly taking the effect of turbulence thereon into account. In this second paper, we aim at deriving simultaneous expressions for the excitation rate, damping rate, and modal surface effect associated with any given p -mode, as an explicit function of the statistical properties of the turbulent velocity field. Methods. We reduce the stochastic wave equation to complex amplitude equations for the normal oscillating modes of the system. We then derive the equivalent Fokker- Planck equation that governs the evolution of the probability density function jointly associated with the real amplitudes and phases of all the oscillating modes of the system simultaneously. The effect of the finite-memory time of the turbulent fluctuations (comparable to the period of the modes) on the modes themselves is consistently and rigorously accounted for, by means of the simplified amplitude equation formalism. This formalism accounts for mutual linear mode coupling in full, and we then turn to the special single-mode case. This allows us to derive evolution equations for the mean energy and mean phase of each mode, from which the excitation rate, the damping rate, and the modal surface effect naturally arise. Results. The expressions obtained here (1) are written as explicit functions of the statistical properties of turbulence, thus allowing for any prescription thereof to be tested against observations, (2) include the contribution of the turbulent dissipation more realistically, and (3) concern the excitation rate, the damping rate, and the modal surface effect of the modes simultaneously. We show that the expression for the excitation rate of the modes is identical to previous results obtained through a different modelling approach, thus supporting the validity of the formalism presented here. We also recover the fact that the damping rate and modal surface effect correspond to the real and imaginary part of the same single complex quantity. We explicitly separate the different physical contributions to these observables, in particular the turbulent pressure contribution and the joint effect of the pressure-rate-of-strain correlation and the turbulent dissipation. We show that the former dominates for high-frequency modes and the latter for low-frequency modes. To illustrate the usefulness of this formalism, we apply it to a simplified case where we can quantify the relative importance of these two contributions, and in particular the threshold between the two frequency regimes, as a function of the turbulent frequency and the degree of anisotropy of both the Reynolds-stress tensor and the dissipation of turbulent energy. Conclusions. The formalism developed in these first two papers, applied to the case of a simplified Lagrangian stochastic model for proof-of-concept purposes, indeed proves to be viable, relevant, and useful for addressing the issue of turbulenceâoscillation coupling in the context of solar-like oscillators. It opens the door to subsequent studies physically more appropriate to the stellar case. It will also allow, once mode coupling is included (i.e. by going beyond the single-mode case), for a realistic description of mode-mode scattering and its influence on mode damping, mode frequency, and the energy distribution across the solar p -mode eigenspectrum
Coupling between turbulence and solar-like oscillations: A combined Lagrangian PDF/SPH approach: I. The stochastic wave equation
International audienceContext. The development of space-borne missions such as CoRoT and Kepler now provides us with numerous and precise asteroseismic measurements that allow us to put better constraints on our theoretical knowledge of the physics of stellar interiors. In order to utilise the full potential of these measurements, however, we need a better theoretical understanding of the coupling between stellar oscillations and turbulent convection.Aims. The aim of this series of papers is to build a new formalism specifically tailored to study the impact of turbulence on the global modes of oscillation in solar-like stars. In building this formalism, we circumvent some fundamental limitations inherent to the more traditional approaches, in particular the need for separate equations for turbulence and oscillations, and the reduction of the turbulent cascade to a unique length and timescale. In this first paper we derive a linear wave equation that directly and consistently contains the turbulence as an input to the model, and therefore naturally contains the information on the coupling between the turbulence and the modes through the stochasticity of the equations.Methods. We use a Lagrangian stochastic model of turbulence based on probability density function methods to describe the evolution of the properties of individual fluid particles through stochastic differential equations. We then transcribe these stochastic differential equations from a Lagrangian frame to a Eulerian frame more adapted to the analysis of stellar oscillations. We combine this method with smoothed particle hydrodynamics, where all the mean fields appearing in the Lagrangian stochastic model are estimated directly from the set of fluid particles themselves, through the use of a weighting kernel function allowing to filter the particles present in any given vicinity. The resulting stochastic differential equations on Eulerian variables are then linearised. As a first step the gas is considered to follow a polytropic relation, and the turbulence is assumed anelastic.Results. We obtain a stochastic linear wave equation governing the time evolution of the relevant wave variables, while at the same time containing the effect of turbulence. The wave equation generalises the classical, unperturbed propagation of acoustic waves in a stratified medium (which reduces to the exact deterministic wave equation in the absence of turbulence) to a form that, by construction, accounts for the impact of turbulence on the mode in a consistent way. The effect of turbulence consists of a non-homogeneous forcing term, responsible for the stochastic driving of the mode, and a stochastic perturbation to the homogeneous part of the wave equation, responsible for both the damping of the mode and the modal surface effects.Conclusions. The stochastic wave equation obtained here represents our baseline framework to properly infer properties of turbulence-oscillation coupling, and can therefore be used to constrain the properties of the turbulence itself with the help of asteroseismic observations. This will be the subject of the rest of the papers in this series