204 research outputs found

    EZH2 Codon 641 Mutations are Common in BCL2-Rearranged Germinal Center B Cell Lymphomas

    Get PDF
    Mutations at codon 641 of EZH2 are recurrent in germinal center B cell lymphomas, and the most common variants lead to altered EZH2 enzymatic activity and enhanced tri-methylation of histone H3 at lysine 27, a repressive chromatin modification. As an initial step toward screening patients for cancer genotype-directed therapy, we developed a screening assay for EZH2 codon 641 mutations amenable for testing formalin-fixed clinical specimens, based on the sensitive SNaPshot single nucleotide extension technology. We detected EZH2 mutations in 12/55 (22%) follicular lymphomas (FL), 5/35 (14%) diffuse large B cell lymphomas with a germinal center immunophenotype (GCB-DLBCL), and 2/11 (18%) high grade B cell lymphomas with concurrent rearrangements of BCL2 and MYC. No EZH2 mutations were detected in cases of Burkitt lymphoma (0/23). EZH2 mutations were frequently associated with the presence of BCL2 rearrangement (BCL2-R) in both the FL (28% of BCL-R cases versus 0% of BCL2-WT cases, p<0.05) and GCB-DLBCL groups (33% of BCL2-R cases versus 4% of BCL2-WT cases, p<0.04), and across all lymphoma types excluding BL (27% of BCL2-R cases versus 3% of BCL2-WT cases, p<0.003). We confirmed gain-of-function activity for all previously reported EZH2 codon 641 mutation variants. Our findings suggest that EZH2 mutations constitute an additional genetic “hit” in many BCL2-rearranged germinal center B cell lymphomas. Our work may be helpful in the selection of lymphoma patients for future trials of pharmacologic agents targeting EZH2 and EZH2-regulated pathways

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment

    Recurrent Chromosomal Copy Number Alterations in Sporadic Chordomas

    Get PDF
    The molecular events in chordoma pathogenesis have not been fully delineated, particularly with respect to copy number changes. Understanding copy number alterations in chordoma may reveal critical disease mechanisms that could be exploited for tumor classification and therapy. We report the copy number analysis of 21 sporadic chordomas using array comparative genomic hybridization (CGH). Recurrent copy changes were further evaluated with immunohistochemistry, methylation specific PCR, and quantitative real-time PCR. Similar to previous findings, large copy number losses, involving chromosomes 1p, 3, 4, 9, 10, 13, 14, and 18, were more common than copy number gains. Loss of CDKN2A with or without loss of CDKN2B on 9p21.3 was observed in 16/20 (80%) unique cases of which six (30%) showed homozygous deletions ranging from 76 kilobases to 4.7 megabases. One copy loss of the 10q23.31 region which encodes PTEN was found in 16/20 (80%) cases. Loss of CDKN2A and PTEN expression in the majority of cases was not attributed to promoter methylation. Our sporadic chordoma cases did not show hotspot point mutations in some common cancer gene targets. Moreover, most of these sporadic tumors are not associated with T (brachyury) duplication or amplification. Deficiency of CDKN2A and PTEN expression, although shared across many other different types of tumors, likely represents a key aspect of chordoma pathogenesis. Sporadic chordomas may rely on mechanisms other than copy number gain if they indeed exploit T/ brachyury for proliferation

    Protective and Enhancing HLA Alleles, HLA-DRB1*0901 and HLA-A*24, for Severe Forms of Dengue Virus Infection, Dengue Hemorrhagic Fever and Dengue Shock Syndrome

    Get PDF
    Dengue has become one of the most common viral diseases transmitted by infected mosquitoes (with any of the four dengue virus serotypes: DEN-1, -2, -3, or -4). It may present as asymptomatic or illness, ranging from mild to severe disease. Recently, the severe forms, dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS), have become the leading cause of death among children in Southern Vietnam. The pathogenesis of DHF/DSS, however, is not yet completely understood. The immune response, virus virulence, and host genetic background are considered to be risk factors contributing to disease severity. Human leucocyte antigens (HLA) expressed on the cell surface function as antigen presenting molecules and those polymorphism can change individuals' immune response. We investigated the HLA-A, -B (class I), and -DRB1 (class II) polymorphism in Vietnamese children with different severity (DHF/DSS) by a hospital-based case-control study. The study showed persons carrying HLA-A*2402/03/10 are about 2 times more likely to have severe dengue infection than others. On the other hand, HLA-DRB1*0901 persons are less likely to develop DSS with DEN-2 virus infection. These results clearly demonstrated that HLA controlled the susceptibility to severe forms of DV infection

    The SOX2 response program in glioblastoma multiforme: an integrated ChIP-seq, expression microarray, and microRNA analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>SOX2 </it>is a key gene implicated in maintaining the stemness of embryonic and adult stem cells. <it>SOX2 </it>appears to re-activate in several human cancers including glioblastoma multiforme (GBM), however, the detailed response program of <it>SOX2 </it>in GBM has not yet been defined.</p> <p>Results</p> <p>We show that knockdown of the <it>SOX2 </it>gene in LN229 GBM cells reduces cell proliferation and colony formation. We then comprehensively characterize the <it>SOX2 </it>response program by an integrated analysis using several advanced genomic technologies including ChIP-seq, microarray profiling, and microRNA sequencing. Using ChIP-seq technology, we identified 4883 <it>SOX2 </it>binding regions in the GBM cancer genome. <it>SOX2 </it>binding regions contain the consensus sequence wwTGnwTw that occurred 3931 instances in 2312 <it>SOX2 </it>binding regions. Microarray analysis identified 489 genes whose expression altered in response to <it>SOX2 </it>knockdown. Interesting findings include that <it>SOX2 </it>regulates the expression of SOX family proteins <it>SOX1 </it>and <it>SOX18</it>, and that <it>SOX2 </it>down regulates <it>BEX1 </it>(brain expressed X-linked 1) and <it>BEX2 </it>(brain expressed X-linked 2), two genes with tumor suppressor activity in GBM. Using next generation sequencing, we identified 105 precursor microRNAs (corresponding to 95 mature miRNAs) regulated by <it>SOX2</it>, including down regulation of miR-143, -145, -253-5p and miR-452. We also show that miR-145 and <it>SOX2 </it>form a double negative feedback loop in GBM cells, potentially creating a bistable system in GBM cells.</p> <p>Conclusions</p> <p>We present an integrated dataset of ChIP-seq, expression microarrays and microRNA sequencing representing the <it>SOX2 </it>response program in LN229 GBM cells. The insights gained from our integrated analysis further our understanding of the potential actions of <it>SOX2 </it>in carcinogenesis and serves as a useful resource for the research community.</p
    corecore