56 research outputs found

    Effects of planform geometry on hover performance of a 2-meter-diameter model of a four-bladed rotor

    Get PDF
    Hover tests were conducted on three small scale rotors to evaluate the effects of blade planform taper on rotor hover performance. Tests were conducted on a rectangular swept-tip configuration, on a configuration with a 3 to 1 taper over the outboard 20 percent of the span, and on a configuration with a 5 to 1 taper over the outboard 20 percent of the blade span. The investigation covered a range of thrust coefficients from 0 to 0.0075 and a range of tip speeds from 300 to 600 ft/sec. The tests showed that both tapered configurations had better hover performance than the swept-tip rectangular configuration and that the 3 to 1 taper configuration was better than the 5 to 1 taper configuration. The test results were compared with predictions made with a prescribed wake analysis, a momentum analysis, and a simplified free wake analysis

    Upper-surface-blowing flow-turning performance

    Get PDF
    Jet exhaust flow-turning characteristics were determined for systematic variations in upper-surface blowing exhaust nozzles and trailing-edge flap configuration variables from experimental wind-off (static) flow studies. For conditions with parallel flow exhausting from the nozzle, jet height (as indicated by nozzle exit height) and flap radius were found to be the most important parameters relating to flow turning. Nonparallel flow from the nozzle, as obtained from an internal roof angle and/or side spread angle, had a large favorable effect on flow turning. Comparisons made between static turning results and wind tunnel aerodynamic studies of identical configurations indicated that static flow-turning results can be indicative of wind-on powered lift performance for both good and poor nozzle-flap combinations but, for marginal designs, can lead to overly optimistic assessment of powered lift potential

    Static and wind-on tests of an upper-surface-blown jet-flap nozzle arrangement for use on the Quiet Clean Short-haul Experimental Engine (QCSEE)

    Get PDF
    The internal aerodynamic performance, the static turning characteristics, and the forward-speed characteristics of two 1/12-scale upper surface-blown jet-flap exhaust-nozzle arrangements designed for use on the Quiet Clean Short-Haul Experimental Engine (QCSEE) were investigated. The nozzles were equipped with interchangeable area-control side doors in the aft sidewalls of the nozzle so that the effective nozzle area could be varied over a wide range. A simulated wing was used to evaluate installation losses for the nozzles. A smoothly curved flap was attached to the trailing edge of the simulated wing to allow an evaluation of the static turning characteristics of the nozzle arrangement. Forward-speed effects on the jet turning characteristics of the QCSEE nozzles were evaluated by mounting a single engine on a semispan wing designed to be representative of a four-engine STOL transport configuration

    Wind tunnel investigation of a twin engine straight wing upper surface blown jet flap configuration

    Get PDF
    An investigation was conducted in a full scale wind tunnel to determine the performance and aerodynamic characteristics of a twin engine, straight wing, upper surface blown jet flap configuration. The model had two simulated high bypass ratio turbofan engines with rectangular nozzles exhausting onto the upper surface of the wing at the 35 percent chord station. The model was tested with an aspect ratio 8.2 wing and with the wingtips removed to give an aspect ratio of 6.0

    Free-flight investigation of the stability and control characteristics of a STOL model with an externally blown jet flap

    Get PDF
    The stability and control characteristics of a four-engine turbofan STOL transport model having an externally blown jet flap have been investigated by means of the flying-model technique in the Langley full-scale tunnel. The flight characteristics of the model were investigated under conditions of symmetric and asymmetric (one engine inoperative) thrust at lift coefficients up to 9.5 and 5.5, respectively. Static characteristics were studied by conventional power-on force tests over the flight-test angle-of-attack range including the stall. In addition to these tests, dynamic longitudinal and lateral stability calculations were performed for comparison with the flight-test results and for use in correlating the model results with STOL handling-qualities criteria

    Aerodynamic characteristics of a counter-rotating, coaxial, hingeless rotor helicopter model with auxiliary propulsion

    Get PDF
    A wind-tunnel model test at advance ratios from 0 to 0.3 with and without auxiliary jet engine thrust is reported. At each advance ratio and engine thrust, both the control power and the aircraft stability were measured. The results indicate that there is a cross-coupling for collective pitch and longitudinal cyclic pitch inputs. The control power for these inputs increased with advance ratio. There was also cross-coupling for differential collective pitch inputs. The airframe was longitudinally unstable, but the instability was less at the highest advance ratio tested. The airframe showed both positive effective dihedral and positive directional stability

    Wind-tunnel evaluation of a 21-percent-scale powered model of a prototype advanced scout helicopter

    Get PDF
    An exploratory wind tunnel investigation of a 21 percent scale powered model of a prototype advanced scout helicopter was conducted in the Langley 4 by 7 Meter Tunnel. The investigation was conducted to define the overall aerodynamic characteristics of the Army Helicopter Improvement Program (AHIP), to determine the effects of the rotor on the aerodynamic characteristics and to evaluate the effect of a mast mounted sight on the aircraft stability characteristics. Tests covered a range of thrust coefficients, advance ratios, angles of attack and angles of sideslip and were run for both rotor on and rotor off configurations. Results of the investigation showed that the prototype configuration was longitudinally unstable with angle of attack for all configurations tested. The instability was due to unfavorable interference effects between the horizontal tail and the wake shed from the engine pylon and rotor hub, which caused a loss of horizontal tail effectiveness. The addition of the mast mounted sight had little effect on the stability of the model, but it caused an alteration in the rotor lift distribution that resulted in substantial interference drag for the sight

    Aerodynamic characteristics of a 1/4 scale powered helicopter model with a V-type empennage

    Get PDF
    An investigation was made in the Langley V/STOL tunnel to determine rotor induced effects on a 1/4-scale helicopter model with a conventional empennage and also a V-type empennage with dihedral angles of 45 deg, 50 deg, 55 deg, and 60 deg. Static longitudinal and lateral directional stability data are presented for rotor advance ratios of 0.057, 0.102, and 0.192 in level flight and climb attitudes. The data are presented without analysis or discussion

    Wind tunnel investigation of a large-scale semispan model with an unswept wing and an upper-surface blown jet flat

    Get PDF
    An investigation of the static longitudinal aerodynamic characteristics of a large-scale semispan model with an unswept wing and an upper-surface blown jet flap for lift augmentation was conducted in the Langley full-scale tunnel. The wing had an aspect ratio of 7.8 (3.9 for the semispan) and a simulated turbofan engine mounted ahead of and above the wing in a nacelle with a rectangular-exit nozzle. The flap system had three spanwise flap segments: (1) an inboard plain flap located behind the engine and having a large radius of curvature to provide a smooth upper surface to enhance the turning of the jet sheet, (2) a double-slotted midspan flap, and (3) a drooped aileron equipped with blowing boundary-layer control. The wing was also equipped with a full-span leading-edge Krueger flap with blowing boundary-layer control. In addition to the aerodynamic measurements, noise measurements were also included in the investigation for positions above and below the wing

    Regularity Properties and Pathologies of Position-Space Renormalization-Group Transformations

    Get PDF
    We reconsider the conceptual foundations of the renormalization-group (RG) formalism, and prove some rigorous theorems on the regularity properties and possible pathologies of the RG map. Regarding regularity, we show that the RG map, defined on a suitable space of interactions (= formal Hamiltonians), is always single-valued and Lipschitz continuous on its domain of definition. This rules out a recently proposed scenario for the RG description of first-order phase transitions. On the pathological side, we make rigorous some arguments of Griffiths, Pearce and Israel, and prove in several cases that the renormalized measure is not a Gibbs measure for any reasonable interaction. This means that the RG map is ill-defined, and that the conventional RG description of first-order phase transitions is not universally valid. For decimation or Kadanoff transformations applied to the Ising model in dimension d3d \ge 3, these pathologies occur in a full neighborhood {β>β0,h<ϵ(β)}\{ \beta > \beta_0 ,\, |h| < \epsilon(\beta) \} of the low-temperature part of the first-order phase-transition surface. For block-averaging transformations applied to the Ising model in dimension d2d \ge 2, the pathologies occur at low temperatures for arbitrary magnetic-field strength. Pathologies may also occur in the critical region for Ising models in dimension d4d \ge 4. We discuss in detail the distinction between Gibbsian and non-Gibbsian measures, and give a rather complete catalogue of the known examples. Finally, we discuss the heuristic and numerical evidence on RG pathologies in the light of our rigorous theorems.Comment: 273 pages including 14 figures, Postscript, See also ftp.scri.fsu.edu:hep-lat/papers/9210/9210032.ps.
    corecore