488 research outputs found

    Spatial cross-correlation of Antarctic Sea ice and seabed topography

    Get PDF
    A time series of derived sea ice concentrations as observed about Antarctica by the Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR) satellite in 1983 is considered. The degree of spatial cross correlation between these data and seabed topography is quantified. The approach is to implement a statistical image processing filter designed to extract local patterns of spatial cross correlation over the entire sea ice field as it undergoes daily changes. Throughout the sea ice, it was found that large scale variations in sea ice concentration correlate systematically with variations in the topography of the seabed. Generally speaking, high concentrations of sea ice occur over deep ocean, whereas areas of encavement, early dissipation and polynya formation develop over topographic features of high elevation. The latter was studied in detail with respect to the features Maud Rise, Astrid Ridge and the continental shelf in the Cosmonaut and Ross Seas. In each case, it is shown that an encavement in sea ice, a polynya, or both develops in the vicinity of the feature in question. As these results are quantified in terms of spatial cross correlation, a potential role is inferred for seabed topography in such fluctuations in the sea ice about Antarctica

    Autonomous Light Management in Flexible Photoelectrochromic Films Integrating High Performance Silicon Solar Microcells

    Get PDF
    Commercial smart window technologies for dynamic light and heat management in building and automotive environments traditionally rely on electrochromic (EC) materials powered by an external source. This design complicates building-scale installation requirements and substantially increases costs for applications in retrofit construction. Self-powered photoelectrochromic (PEC) windows are an intuitive alternative wherein a photovoltaic (PV) material is used to power the electrochromic device, which modulates the transmission of the incident solar flux. The PV component in this application must be sufficiently transparent and produce enough power to efficiently modulate the EC device transmission. Here, we propose Si solar microcells (μ-cells) that are i) small enough to be visually transparent to the eye, and ii) thin enough to enable flexible PEC devices. Visual transparency is achieved when Si μ-cells are arranged in high pitch (i.e. low-integration density) form factors while maintaining the advantages of a single-crystalline PV material (i.e., long lifetime and high performance). Additionally, the thin dimensions of these Si μ-cells enable fabrication on flexible substrates to realize these flexible PEC devices. The current work demonstrates this concept using WO₃ as the EC material and V₂O₅ as the ion storage layer, where each component is fabricated via sol-gel methods that afford improved prospects for scalability and tunability in comparison to thermal evaporation methods. The EC devices display fast switching times, as low as 8 seconds, with a modulation in transmission as high as 33%. Integration with two Si μ-cells in series (affording a 1.12 V output) demonstrates an integrated PEC module design with switching times of less than 3 minutes, and a modulation in transmission of 32% with an unprecedented EC:PV areal ratio

    Understanding the Effects of the Neighbourhood Built Environment on Public Health with Open Data

    Get PDF
    The investigation of the effect of the built environment in a neighbourhood and how it impacts residents' health is of value to researchers from public health policy to social science. The traditional methods to assess this impact is through surveys which lead to temporally and spatially coarse grained data and are often not cost effective. Here we propose an approach to link the effects of neighbourhood services over citizen health using a technique that attempts to highlight the cause-effect aspects of these relationships. The method is based on the theory of {\em propensity score matching with multiple `doses'} and it leverages existing fine grained open web data. To demonstrate the method, we study the effect of sport venue presence on the prevalence of antidepressant prescriptions in over 600 neighbourhoods in London over a period of three years. We find the distribution of effects is approximately normal, centred on a small negative effect on prescriptions with increases in the availability of sporting facilities, on average. We assess the procedure through some standard quantitative metrics as well as matching on synthetic data generated by modelling the real data. This approach opens the door to fast and inexpensive alternatives to quantify and continuously monitor effects of the neighborhood built environment on population health.Cambridge Trust and King's Colleg

    Vascular smooth muscle TRPC3 channels facilitate the inverse hemodynamic response during status epilepticus

    Get PDF
    Human status epilepticus (SE) is associated with a pathological reduction in cerebral blood flow termed the inverse hemodynamic response (IHR). Canonical transient receptor potential 3 (TRPC3) channels are integral to the propagation of seizures in SE, and vascular smooth muscle cell (VSMC) TRPC3 channels participate in vasoconstriction. Therefore, we hypothesize that cerebrovascular TRPC3 channels may contribute to seizure-induced IHR. To examine this possibility, we developed a smooth muscle-specific TRPC3 knockout (TRPC3smcKO) mouse. To quantify changes in neurovascular coupling, we combined laser speckle contrast imaging with simultaneous electroencephalogram recordings. Control mice exhibited multiple IHRs, and a limited increase in cerebral blood flow during SE with a high degree of moment-to-moment variability in which blood flow was not correlated with neuronal activity. In contrast, TRPC3smcKO mice showed a greater increase in blood flow that was less variable and was positively correlated with neuronal activity. Genetic ablation of smooth muscle TRPC3 channels shortened the duration of SE by eliminating a secondary phase of intense seizures, which was evident in littermate controls. Our results are consistent with the idea that TRPC3 channels expressed by cerebral VSMCs contribute to the IHR during SE, which is a critical factor in the progression of SE.Fil: Cozart, Michael A.. University of Arkansas for Medical Sciences; Estados UnidosFil: Phelan, Kevin D.. University of Arkansas for Medical Sciences; Estados UnidosFil: Wu, Hong. University of Arkansas for Medical Sciences; Estados UnidosFil: Mu, Shengyu. University of Arkansas for Medical Sciences; Estados UnidosFil: Birnbaumer, Lutz. Pontificia Universidad Católica Argentina "Santa María de los Buenos Aires". Instituto de Investigaciones Biomédicas. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas; ArgentinaFil: Rusch, Nancy J.. University of Arkansas for Medical Sciences; Estados UnidosFil: Zheng, Fang. University of Arkansas for Medical Sciences; Estados Unido

    Cerebrovascular Pathology in Down Syndrome and Alzheimer Disease

    Get PDF
    People with Down syndrome (DS) are at high risk for developing Alzheimer disease (AD) with age. Typically, by age 40 years, most people with DS have sufficient neuropathology for an AD diagnosis. Interestingly, atherosclerosis and hypertension are atypical in DS with age, suggesting the lack of these vascular risk factors may be associated with reduced cerebrovascular pathology. However, because the extra copy of APP leads to increased beta-amyloid peptide (Aβ) accumulation in DS, we hypothesized that there would be more extensive and widespread cerebral amyloid angiopathy (CAA) with age in DS relative to sporadic AD. To test this hypothesis CAA, atherosclerosis and arteriolosclerosis were used as measures of cerebrovascular pathology and compared in post mortem tissue from individuals with DS (n = 32), sporadic AD (n = 80) and controls (n = 37). CAA was observed with significantly higher frequencies in brains of individuals with DS compared to sporadic AD and controls. Atherosclerosis and arteriolosclerosis were rare in the cases with DS. CAA in DS may be a target for future interventional clinical trials

    Perfusion Assessment in Laparoscopic Left-Sided/Anterior Resection (PILLAR II): A Multi-Institutional Study

    Get PDF
    BackgroundOur primary objective was to demonstrate the utility and feasibility of the intraoperative assessment of colon and rectal perfusion using fluorescence angiography (FA) during left-sided colectomy and anterior resection. Anastomotic leak (AL) after colorectal resection increases morbidity, mortality, and, in cancer cases, recurrence rates. Inadequate perfusion may contribute to AL. The PINPOINT Endoscopic Fluorescence Imaging System allows for intraoperative assessment of anastomotic perfusion.Study DesignThis is a prospective, multicenter, open-label, clinical trial that assessed the feasibility and utility of FA for intraoperative perfusion assessment during left-sided colectomy and anterior resection at 11 centers in the United States.ResultsA total of 147 patients were enrolled, of whom 139 were eligible for analysis. Diverticulitis (44%), rectal cancer (25%), and colon cancer (21%) were the most prevalent indications for surgery. The mean level of anastomosis was 10 ± 4 cm from the anal verge. Splenic-flexure mobilization was performed in 81% and high ligation of the inferior mesenteric artery in 61.9% of patients. There was a 99% success rate for FA, and FA changed surgical plans in 11 (8%) patients, with the majority of changes occurring at the time of transection of the proximal margin (7%). Overall morbidity rates were 17%. The anastomotic leak rate was 1.4% (n = 2). There were no anastomotic leaks in the 11 patients who had a change in surgical plan based on intraoperative perfusion assessment with FA.ConclusionsPINPOINT is a safe and feasible tool for intraoperative assessment of tissue perfusion during colorectal resection. There were no anastomotic leaks in patients in whom the anastomosis was revised based on inadequate perfusion with FA

    Autonomous Light Management in Flexible Photoelectrochromic Films Integrating High Performance Silicon Solar Microcells

    Get PDF
    Commercial smart window technologies for dynamic light and heat management in building and automotive environments traditionally rely on electrochromic (EC) materials powered by an external source. This design complicates building-scale installation requirements and substantially increases costs for applications in retrofit construction. Self-powered photoelectrochromic (PEC) windows are an intuitive alternative wherein a photovoltaic (PV) material is used to power the electrochromic device, which modulates the transmission of the incident solar flux. The PV component in this application must be sufficiently transparent and produce enough power to efficiently modulate the EC device transmission. Here, we propose Si solar microcells (μ-cells) that are i) small enough to be visually transparent to the eye, and ii) thin enough to enable flexible PEC devices. Visual transparency is achieved when Si μ-cells are arranged in high pitch (i.e. low-integration density) form factors while maintaining the advantages of a single-crystalline PV material (i.e., long lifetime and high performance). Additionally, the thin dimensions of these Si μ-cells enable fabrication on flexible substrates to realize these flexible PEC devices. The current work demonstrates this concept using WO₃ as the EC material and V₂O₅ as the ion storage layer, where each component is fabricated via sol-gel methods that afford improved prospects for scalability and tunability in comparison to thermal evaporation methods. The EC devices display fast switching times, as low as 8 seconds, with a modulation in transmission as high as 33%. Integration with two Si μ-cells in series (affording a 1.12 V output) demonstrates an integrated PEC module design with switching times of less than 3 minutes, and a modulation in transmission of 32% with an unprecedented EC:PV areal ratio
    • …
    corecore