5,079 research outputs found

    New ΔR for the southwest Pacific Ocean

    Get PDF
    ΔR results of known-age shells from the Solomon and Coral Seas and the northwest coast of New Ireland are presented. The results are too few to be conclusive but indicate that ΔR in this region is variable. An average ΔR value of 370 ± 25 yr is recorded for a range of shell species from Kavieng Harbor, New Ireland, and is primarily attributed to weak equatorial upwelling of depleted 14C due to seasonal current reversals. In contrast, values from the Solomon and Coral Seas are lower (average ΔR = 45 ± 19 yr). Higher ΔR values for some shellfish from these 2 seas is attributed to ingestion of 14Cdepleted sediment by deposit-feeding species

    Spatial cross-correlation of Antarctic Sea ice and seabed topography

    Get PDF
    A time series of derived sea ice concentrations as observed about Antarctica by the Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR) satellite in 1983 is considered. The degree of spatial cross correlation between these data and seabed topography is quantified. The approach is to implement a statistical image processing filter designed to extract local patterns of spatial cross correlation over the entire sea ice field as it undergoes daily changes. Throughout the sea ice, it was found that large scale variations in sea ice concentration correlate systematically with variations in the topography of the seabed. Generally speaking, high concentrations of sea ice occur over deep ocean, whereas areas of encavement, early dissipation and polynya formation develop over topographic features of high elevation. The latter was studied in detail with respect to the features Maud Rise, Astrid Ridge and the continental shelf in the Cosmonaut and Ross Seas. In each case, it is shown that an encavement in sea ice, a polynya, or both develops in the vicinity of the feature in question. As these results are quantified in terms of spatial cross correlation, a potential role is inferred for seabed topography in such fluctuations in the sea ice about Antarctica

    Parameter dependence of phase and log amplitude scintillation

    Get PDF
    Parameter dependence of phase and log amplitude scintillation - Signal statistics of spherical wave emitted by transmitter through intervening slab of irregularitie

    Critical role of canonical transient receptor potential channel 7 in initiation of seizures

    Get PDF
    Status epilepticus (SE) is a life-threatening disease that has been recognized since antiquity but still causes over 50,000 deaths annually in the United States. The prevailing view on the pathophysiology of SE is that it is sustained by a loss of normal inhibitory mechanisms of neuronal activity. However, the early process leading to the initiation of SE is not well understood. Here, we show that, as seen in electroencephalograms, SE induced by the muscarinic agonist pilocarpine in mice is preceded by a specific increase in the gamma wave, and genetic ablation of canonical transient receptor potential channel (TRPC) 7 significantly reduces this pilocarpine-induced increase of gamma wave activity, preventing the occurrence of SE. At the cellular level, TRPC7 plays a critical role in the generation of spontaneous epileptiform burst firing in cornu ammonis (CA) 3 pyramidal neurons in brain slices. At the synaptic level, TRPC7 plays a significant role in the long-term potentiation at the CA3 recurrent collateral synapses and Schaffer collateral-CA1 synapses, but not at the mossy fiber-CA3 synapses. Taken together, our data suggest that epileptiform burst firing generated in the CA3 region by activity-dependent enhancement of recurrent collateral synapses may be an early event in the initiation process of SE and that TRPC7 plays a critical role in this cellular event. Our findings reveal that TRPC7 is intimately involved in the initiation of seizures both in vitro and in vivo. To our knowledge, this contribution to initiation of seizures is the first identified functional role for the TRPC7 ion channel.Fil: Phelan, K. D.. University of Arkansas for Medical Sciences; Estados UnidosFil: Shwe, U. T.. University of Arkansas for Medical Sciences; Estados UnidosFil: Abramowitz, J.. National Institute of Environmental Health Sciences; Estados Unidos. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; ArgentinaFil: Birnbaumer, Lutz. National Institute of Environmental Health Sciences; Estados UnidosFil: Zheng, F.. University of Arkansas for Medical Sciences; Estados Unido
    • 

    corecore