5 research outputs found
Genome Sequence of the Pathogenic Intestinal Spirochete Brachyspira hyodysenteriae Reveals Adaptations to Its Lifestyle in the Porcine Large Intestine
Brachyspira hyodysenteriae is an anaerobic intestinal spirochete that colonizes the large intestine of pigs and causes swine dysentery, a disease of significant economic importance. The genome sequence of B. hyodysenteriae strain WA1 was determined, making it the first representative of the genus Brachyspira to be sequenced, and the seventeenth spirochete genome to be reported. The genome consisted of a circular 3,000,694 base pair (bp) chromosome, and a 35,940 bp circular plasmid that has not previously been described. The spirochete had 2,122 protein-coding sequences. Of the predicted proteins, more had similarities to proteins of the enteric Escherichia coli and Clostridium species than they did to proteins of other spirochetes. Many of these genes were associated with transport and metabolism, and they may have been gradually acquired through horizontal gene transfer in the environment of the large intestine. A reconstruction of central metabolic pathways identified a complete set of coding sequences for glycolysis, gluconeogenesis, a non-oxidative pentose phosphate pathway, nucleotide metabolism, lipooligosaccharide biosynthesis, and a respiratory electron transport chain. A notable finding was the presence on the plasmid of the genes involved in rhamnose biosynthesis. Potential virulence genes included those for 15 proteases and six hemolysins. Other adaptations to an enteric lifestyle included the presence of large numbers of genes associated with chemotaxis and motility. B. hyodysenteriae has diverged from other spirochetes in the process of accommodating to its habitat in the porcine large intestine
The Complete Genome Sequence of the Pathogenic Intestinal Spirochete Brachyspira pilosicoli and Comparison with Other Brachyspira Genomes
Background: The anaerobic spirochete Brachyspira pilosicoli colonizes the large intestine of various species of birds and mammals, including humans. It causes ''intestinal spirochetosis'', a condition characterized by mild colitis, diarrhea and reduced growth. This study aimed to sequence and analyse the bacterial genome to investigate the genetic basis of its specialized ecology and virulence. Methodology/Principal Findings: The genome of B. pilosicoli 95/1000 was sequenced, assembled and compared with that of the pathogenic Brachyspira hyodysenteriae and a near-complete sequence of Brachyspira murdochii. The B. pilosicoli genome was circular, composed of 2,586,443 bp with a 27.9 mol% G+C content, and encoded 2,338 genes. The three Brachyspira species shared 1,087 genes and showed evidence of extensive genome rearrangements. Despite minor differences in predicted protein functional groups, the species had many similar features including core metabolic pathways. Genes distinguishing B. pilosicoli from B. hyodysenteriae included those for a previously undescribed bacteriophage that may be useful for genetic manipulation, for a glycine reductase complex allowing use of glycine whilst protecting from oxidative stress, and for aconitase and related enzymes in the incomplete TCA cycle, allowing glutamate synthesis and function of the cycle during oxidative stress. B. pilosicoli had substantially fewer methyl-accepting chemotaxis genes than B. hyodysenteriae and hence these species are likely to have different chemotactic responses that may help to explain their different host range and colonization sites. B. pilosicoli lacked the gene for a new putative hemolysin identified in B. hyodysenteriae WA1. Both B. pilosicoli and B. murdochii lacked the rfbBADC gene cluster found on the B. hyodysenteriae plasmid, and hence were predicted to have different lipooligosaccharide structures. Overall, B. pilosicoli 95/1000 had a variety of genes potentially contributing to virulence. Conclusions/Significance: The availability of the complete genome sequence of B. pilosicoli 95/1000 will facilitate functional genomics studies aimed at elucidating host-pathogen interactions and virulence
Comparative genomics to investigate genome function and adaptations in the newly sequenced Brachyspira hyodysenteriae and Brachyspira pilosicoli
Brachyspira hyodysenteriae and Brachyspira pilosicoli are anaerobic intestinal spirochaetes that are the aetiological agents of swine dysentery and intestinal spirochaetosis, respectively. As part of this PhD study the genome sequence of B. hyodysenteriae strain WA1 and a near complete sequence of B. pilosicoli strain 95/1000 were obtained, and subjected to comparative genomic analysis. The B. hyodysenteriae genome consisted of a circular 3.0 Mb chromosome, and a 35,940 bp circular plasmid that has not previously been described. The incomplete genome of B. pilosicoli contained 4 scaffolds. There were 2,652 and 2,297 predicted ORFs in the B. hyodysenteriae and B. pilosicoli strains, respectively. Of the predicted ORFs, more had similarities to proteins of the enteric Clostridium species than they did to proteins of other spirochaetes. Many of these genes were associated with transport and metabolism, and they may have been gradually acquired through horizontal gene transfer in the environment of the large intestine.
A reconstruction of central metabolic pathways of the Brachyspira species identified a complete set of coding sequences for glycolysis, gluconeogenesis, a non-oxidative pentose phosphate pathway, nucleotide metabolism and a respiratory electron transport chain. A notable finding was the presence of rfb genes on the B. hyodysenteriae plasmid, and their apparent absence from B. pilosicoli. As these genes are involved in rhamnose biosynthesis it is likely that the composition of the B. hyodysenteriae lipooligosaccharide O-sugars is different from that of B. pilosicoli. O-antigen differences in these related species could be associated with differences in their specific niches, and/or with their disease specificity. Overall, comparison of B. hyodysenteriae and B. pilosicoli protein content and analysis of their central metabolic pathways showed that they have diverged markedly from other spirochaetes in the process of adapting to their habitat in the large intestine.
The presence of overlapping genes in the two spirochaetes and in other spirochaete species also was investigated. The number of overlapping genes in the 12 spirochaete genomes examined ranged from 11-45%. Of these, 80% were unidirectional. Overlapping genes were found irregularly distributed within the Brachyspira genomes such that 70-80% of them occurred on the same strand (unidirectional, ->->/). The remaining 4-6% of overlapping genes were convergent (->50% of the total observations overlapping by >4 bp. A small number of overlapping gene-pairs were duplicated within each genome and there were some triplet overlapping genes. Unique orthologous overlapping genes were identified within the various spirochaete genera. Over 75% of the overlapping genes in the Brachyspira species were in the same or related metabolic pathway. This finding suggests that overlapping genes are not only likely to be the result of functional constraints but also are constrained from a metabolomic context. Of the remaining 25% overlapping genes, 50% contained one hypothetical gene with unknown function. In addition, in one of the orthologous overlapping genes in the Brachyspira species, a promoter was shared, indicating the presence of a novel class of overlapping gene operon in these intestinal spirochaetes