147 research outputs found

    Analysis of factor interactions with RNA polymerase II elongation complexes using a new electrophoretic mobility shift assay

    Get PDF
    The elongation phase of transcription by RNA polymerase II (RNAP II) is controlled by a carefully orchestrated series of interactions with both negative and positive factors. However, due to the limitations of current methods and techniques, not much is known about whether and how these proteins physically associate with the engaged polymerases. To gain insight into the detailed mechanisms involved, we established an experimental system for analyzing direct factor interactions to RNAP II elongation complexes on native gels, namely elongation complex electrophoretic mobility shift assay (EC-EMSA). This new assay effectively allowed detection of interactions of TFIIF, TTF2, TFIIS, DSIF and P-TEFb with elongation complexes generated from a natural promoter using an immobilized template. As an application of this assay system, we characterized the association of transcription elongation factor DSIF with RNAP II elongation complexes and discovered that the nascent transcript facilitated recruitment of DSIF. Examples of how the system can be manipulated to address different questions are provided. EC-EMSA should be useful for further investigation of factor interactions with RNAP II elongation complexes

    Mutant induced pluripotent stem cell lines recapitulate aspects of TDP-43 proteinopathies and reveal cell-specific vulnerability

    Get PDF
    Transactive response DNA-binding (TDP-43) protein is the dominant disease protein in amyotrophic lateral sclerosis (ALS) and a subgroup of frontotemporal lobar degeneration (FTLD-TDP). Identification of mutations in the gene encoding TDP-43 (TARDBP) in familial ALS confirms a mechanistic link between misaccumulation of TDP-43 and neurodegeneration and provides an opportunity to study TDP-43 proteinopathies in human neurons generated from patient fibroblasts by using induced pluripotent stem cells (iPSCs). Here, we report the generation of iPSCs that carry the TDP-43 M337V mutation and their differentiation into neurons and functional motor neurons. Mutant neurons had elevated levels of soluble and detergent-resistant TDP-43 protein, decreased survival in longitudinal studies, and increased vulnerability to antagonism of the PI3K pathway. We conclude that expression of physiological levels of TDP-43 in human neurons is sufficient to reveal a mutation-specific cell-autonomous phenotype and strongly supports this approach for the study of disease mechanisms and for drug screening

    Connecting Mutations of the RNA Polymerase II C-Terminal Domain to Complex Phenotypic Changes Using Combined Gene Expression and Network Analyses

    Get PDF
    The C-terminal domain (CTD) of the largest subunit in DNA-dependent RNA polymerase II (RNAP II) is essential for mRNA synthesis and processing, through coordination of an astounding array of protein-protein interactions. Not surprisingly, CTD mutations can have complex, pleiotropic impacts on phenotype. For example, insertions of five alanine residues between CTD diheptads in yeast, which alter the CTD's overall tandem structure and physically separate core functional units, dramatically reduce growth rate and result in abnormally large cells that accumulate increased DNA content over time. Patterns by which specific CTD-protein interactions are disrupted by changes in CTD structure, as well as how downstream metabolic pathways are impacted, are difficult to target for direct experimental analyses. In an effort to connect an altered CTD to complex but quantifiable phenotypic changes, we applied network analyses of genes that are differentially expressed in our five alanine CTD mutant, combined with established genetic interactions from the Saccharomyces cerevisiae Genome Database (SGD). We were able to identify candidate genetic pathways, and several key genes, that could explain how this change in CTD structure leads to the specific phenotypic changes observed. These hypothetical networks identify links between CTD-associated proteins and mitotic function, control of cell cycle checkpoint mechanisms, and expression of cell wall and membrane components. Such results can help to direct future genetic and biochemical investigations that tie together the complex impacts of the CTD on global cellular metabolism

    Unexpected similarities between C9ORF72 and sporadic forms of ALS/FTD suggest a common disease mechanism

    Get PDF
    Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) represent two ends of a disease spectrum with shared clinical, genetic and pathological features. These include near ubiquitous pathological inclusions of the RNA-binding protein (RBP) TDP-43, and often the presence of a GGGGCC expansion in the C9ORF72 (C9) gene. Previously, we reported that the sequestration of hnRNP H altered the splicing of target transcripts in C9ALS patients (Conlon et al., 2016). Here, we show that this signature also occurs in half of 50 postmortem sporadic, non-C9 ALS/FTD brains. Furthermore, and equally surprisingly, these ‘like-C9’ brains also contained correspondingly high amounts of insoluble TDP-43, as well as several other disease-related RBPs, and this correlates with widespread global splicing defects. Finally, we show that the like-C9 sporadic patients, like actual C9ALS patients, were much more likely to have developed FTD. We propose that these unexpected links between C9 and sporadic ALS/FTD define a common mechanism in this disease spectrum

    Comment on "Drug Screening for ALS Using Patient-Specific Induced Pluripotent Stem Cells"

    Get PDF
    Egawa et al. recently showed the value of patient-specific induced pluripotent stem cells (iPSCs) for modeling amyotrophic lateral sclerosis in vitro. Their study and our work highlight the need for complementary assays to detect small, but potentially important, phenotypic differences between control iPSC lines and those carrying disease mutations

    Chromatin signature of embryonic pluripotency is established during genome activation

    Get PDF
    available in PMC 2011 April 8.After fertilization the embryonic genome is inactive until transcription is initiated during the maternal–zygotic transition. This transition coincides with the formation of pluripotent cells, which in mammals can be used to generate embryonic stem cells. To study the changes in chromatin structure that accompany pluripotency and genome activation, we mapped the genomic locations of histone H3 molecules bearing lysine trimethylation modifications before and after the maternal–zygotic transition in zebrafish. Histone H3 lysine 27 trimethylation (H3K27me3), which is repressive, and H3K4me3, which is activating, were not detected before the transition. After genome activation, more than 80% of genes were marked by H3K4me3, including many inactive developmental regulatory genes that were also marked by H3K27me3. Sequential chromatin immunoprecipitation demonstrated that the same promoter regions had both trimethylation marks. Such bivalent chromatin domains also exist in embryonic stem cells and are thought to poise genes for activation while keeping them repressed. Furthermore, we found many inactive genes that were uniquely marked by H3K4me3. Despite this activating modification, these monovalent genes were neither expressed nor stably bound by RNA polymerase II. Inspection of published data sets revealed similar monovalent domains in embryonic stem cells. Moreover, H3K4me3 marks could form in the absence of both sequence-specific transcriptional activators and stable association of RNA polymerase II, as indicated by the analysis of an inducible transgene. These results indicate that bivalent and monovalent domains might poise embryonic genes for activation and that the chromatin profile associated with pluripotency is established during the maternal–zygotic transition.National Institutes of Health (U.S.) (grant 1R01 HG004069)National Institutes of Health (U.S.) (grant 5R01 GM56211)Human Frontier Science Program (Strasbourg, France) (LT-00090/2007)European Molecular Biology Organization (fellowship

    Unexpected frequency of the pathogenic AR CAG repeat expansion in the general population

    Get PDF
    CAG repeat expansions in exon 1 of the AR gene on the X chromosome cause spinal and bulbar muscular atrophy, a male-specific progressive neuromuscular disorder associated with a variety of extra-neurological symptoms. The disease has a reported male prevalence of 1:30,303 or less, but the AR repeat expansion frequency is unknown. We established a pipeline, which combines the use of the ExpansionHunter tool and visual validation, to detect AR CAG expansion on whole-genome sequencing data, benchmarked it to fragment PCR sizing, and applied it to 74,277 unrelated individuals from four large cohorts. Our pipeline showed sensitivity of 100% (95% C.I. 90.8-100%), specificity of 99% (95% C.I. 94.2-99.7%), and positive predictive value of 97.4% (95% C.I. 84.4-99.6%). We found the mutation frequency to be 1:3,182 (95% C.I. 1:2,309-1:4,386, n=117,734) X chromosomes - ten times more frequent than the reported disease prevalence. Modelling using the novel mutation frequency led to estimate disease prevalence of 1:6,887 males, more than four times more frequent than the reported disease prevalence. This discrepancy is possibly due to underdiagnosis of this neuromuscular condition, reduced prevalence, and/or pleomorphic clinical manifestations

    Exome sequencing in amyotrophic lateral sclerosis implicates a novel gene, DNAJC7, encoding a heat-shock protein

    Get PDF
    To discover novel genes underlying amyotrophic lateral sclerosis (ALS), we aggregated exomes from 3,864 cases and 7,839 ancestry-matched controls. We observed a significant excess of rare protein-truncating variants among ALS cases, and these variants were concentrated in constrained genes. Through gene level analyses, we replicated known ALS genes including SOD1, NEK1 and FUS. We also observed multiple distinct protein-truncating variants in a highly constrained gene, DNAJC7. The signal in DNAJC7 exceeded genome-wide significance, and immunoblotting assays showed depletion of DNAJC7 protein in fibroblasts in a patient with ALS carrying the p.Arg156Ter variant. DNAJC7 encodes a member of the heat-shock protein family, HSP40, which, along with HSP70 proteins, facilitates protein homeostasis, including folding of newly synthesized polypeptides and clearance of degraded proteins. When these processes are not regulated, misfolding and accumulation of aberrant proteins can occur and lead to protein aggregation, which is a pathological hallmark of neurodegeneration. Our results highlight DNAJC7 as a novel gene for ALS

    Low-complexity regions within protein sequences have position-dependent roles

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Regions of protein sequences with biased amino acid composition (so-called Low-Complexity Regions (LCRs)) are abundant in the protein universe. A number of studies have revealed that i) these regions show significant divergence across protein families; ii) the genetic mechanisms from which they arise lends them remarkable degrees of compositional plasticity. They have therefore proved difficult to compare using conventional sequence analysis techniques, and functions remain to be elucidated for most of them. Here we undertake a systematic investigation of LCRs in order to explore their possible functional significance, placed in the particular context of Protein-Protein Interaction (PPI) networks and Gene Ontology (GO)-term analysis.</p> <p>Results</p> <p>In keeping with previous results, we found that LCR-containing proteins tend to have more binding partners across different PPI networks than proteins that have no LCRs. More specifically, our study suggests i) that LCRs are preferentially positioned towards the protein sequence extremities and, in contrast with centrally-located LCRs, such terminal LCRs show a correlation between their lengths and degrees of connectivity, and ii) that centrally-located LCRs are enriched with transcription-related GO terms, while terminal LCRs are enriched with translation and stress response-related terms.</p> <p>Conclusions</p> <p>Our results suggest not only that LCRs may be involved in flexible binding associated with specific functions, but also that their positions within a sequence may be important in determining both their binding properties and their biological roles.</p
    corecore