92 research outputs found

    Real-time Damper Force Estimation for Automotive Suspension: A Generalized H2/LPV Approach

    Get PDF
    The real-time knowledge of the damper force is of paramount importance in controlling and diagnosing automotive suspension systems. This study presents a generalized H2/LPV observer for damper force estimation of a semi-active electro-rheological (ER) suspension system. First, an extended quarter-car model augmented with the nonlinear and dynamical model of the semi-active suspension system is written into the quasi-LPV formulation. Then, the damper force estimation method is developed through a generalized H2/LPV observer whose objective is to handle the impact of unknown road disturbances and sensor noise on the estimation errors of the state variables thanks to the H2 norm. The measured sprung and unsprung mass accelerations of the quarter-car system are used as inputs for the observer. The proposed approach is simulated with validated model of the 1/5-scaled real vehicle testbed of GIPSA-lab. Simulation results show the performance of the estimation method against unknown disturbances, emphasizing the effectiveness of the damper force estimation in real time

    Benefits of triple-layer remote phosphor structure in improving color quality and luminous flux of white LED

    Get PDF
    Remote phosphor structure has higher luminous efficiency comparing to that of both conformal phosphor and in-cup phosphor structures. However, it is hard to control the color quality of remote phosphor structure, and this issue has become one of the most researchable objectives to many researchers in recent years. Up to now, there are two remote phosphor structures applied to improve the color quality, including dual-layer phosphor configuration and triple-layer phosphor configuration. The purpose of this research is to select one of those configurations to have multi-chip white LEDs (WLEDs) achieved the highest color rendering index (CRI), color quality scale (CQS), luminous efficacy (LE), and color uniformity. In this research, WLEDs with two correlated color temperatures (CCT) of 6600K and 7700K were applied. The obtained results showed that triple-layer phosphor configuration is more outstanding in CRI, CQS, and LE. Moreover, the color deviation has been significantly reduced, which means the color uniformity has been enhanced with the application of triple-layer phosphor configuration. These results can be proven by scattering properties of phosphor layers based on Mie theory. Thus, the researched results have become a reliable and valuable reference for manufacturing higher-quality WLEDs
    • …
    corecore