291 research outputs found

    Numerical modeling of thermal dust polarization from aligned grains in the envelope of evolved stars with updated POLARIS

    Full text link
    Magnetic fields are thought to influence the formation and evolution of evolved star envelopes. Thermal dust polarization from magnetically aligned grains is potentially a powerful tool for probing magnetic fields and dust properties in these circumstellar environments. In this paper, we present numerical modeling of thermal dust polarization from the envelope of IK Tau using the magnetically enhanced radiative torque (MRAT) alignment theory implemented in our updated POLARIS code. Due to the strong stellar radiation field, the minimum size required for RAT alignment of silicate grains is ∼0.005−0.05 μm\sim 0.005 - 0.05\,\rm\mu m. Additionally, ordinary paramagnetic grains can achieve perfect alignment by MRAT in the inner regions of r<500 aur < 500\,\rm au due to stronger magnetic fields of B∼10B\sim 10 mG - 1G, producing thermal dust polarization degree of ∼10 %\sim 10\,\%. The polarization degree can be enhanced to ∼20−40%\sim 20-40\% for grains with embedded iron inclusions. We also find that the magnetic field geometry affects the alignment size and the resulting polarization degree due to the projection effect in the plane-of-sky. We also study the spectrum of polarized thermal dust emission and find the increased polarization degree toward λ>50 μm\lambda > 50\,\rm\mu m due to the alignment of small grains by MRAT. Furthermore, we investigate the impact of rotational disruption by RATs (RAT-D) and find the RAT-D effect cause a decrease in the dust polarization fraction. Finally, we compare our numerical results with available polarization data observed by SOFIA/HAWC+ for constraining dust properties, suggesting grains are unlikely to have embedded iron clusters and might have slightly elongated shapes. Our modeling results suggest further observational studies at far-infrared/sub-millimeter wavelengths to understand the properties of magnetic fields and dust in AGB envelopes.Comment: 27 pages, 23 figures, 1 table, to be submitte

    Studying Magnetic Fields and Dust in M17 Using Polarized Thermal Dust Emission Observed by SOFIA/HAWC

    Get PDF
    We report on the highest spatial resolution measurement to date of magnetic fields (B-fields) in M17 using thermal dust polarization measurements taken by SOFIA/HAWC+ centered at a wavelength of 154 μm. Using the Davis–Chandrasekhar–Fermi method, in which the polarization angle dispersion calculated using the structure function technique is the quantity directly observed by SOFIA/HAWC+, we found the presence of strong B-fields of 980 ± 230 and 1665 ± 885 μG in the lower-density M17-N and higher-density M17-S regions, respectively. The B-field morphology in M17-N possibly mimics the fields in gravitationally collapsing molecular cores, while in M17-S the fields run perpendicular to the density structure. M17-S also displays a pillar feature and an asymmetric large-scale hourglass-shaped field. We use the mean B-field strengths to determine Alfvénic Mach numbers for both regions, finding that B-fields dominate over turbulence. We calculate the mass-to-flux ratio, λ, finding λ = 0.07 for M17-N and 0.28 for M17-S. These subcritical λ values are consistent with the lack of massive stars formed in M17. To study dust physics, we analyze the relationship between dust polarization fraction, p, emission intensity, I, gas column density, N(H2), polarization angle dispersion function, S, and dust temperature, T d. p decreases with intensity as I −α with α = 0.51. p tends to first increase with T d, but then decreases at higher T d. The latter feature, seen in M17-N at high T d when N(H2) and S decrease, is evidence of the radiative torque disruption effect

    Antibiotic use and prescription and its effects on Enterobacteriaceae in the gut in children with mild respiratory infections in Ho Chi Minh City, Vietnam. A prospective observational outpatient study.

    Get PDF
    BACKGROUND AND OBJECTIVES: Treatment guidelines do not recommend antibiotic use for acute respiratory infections (ARI), except for streptococcal pharyngitis/tonsillitis and pneumonia. However, antibiotics are prescribed frequently for children with ARI, often in absence of evidence for bacterial infection. The objectives of this study were 1) to assess the appropriateness of antibiotic prescriptions for mild ARI in paediatric outpatients in relation to available guidelines and detected pathogens, 2) to assess antibiotic use on presentation using questionnaires and detection in urine 3) to assess the carriage rates and proportions of resistant intestinal Enterobacteriaceae before, during and after consultation. MATERIALS AND METHODS: Patients were prospectively enrolled in Children's Hospital 1, Ho Chi Minh City, Vietnam and diagnoses, prescribed therapy and outcome were recorded on first visit and on follow-up after 7 days. Respiratory bacterial and viral pathogens were detected using molecular assays. Antibiotic use before presentation was assessed using questionnaires and urine HPLC. The impact of antibiotic usage on intestinal Enterobacteriaceae was assessed with semi-quantitative culture on agar with and without antibiotics on presentation and after 7 and 28 days. RESULTS: A total of 563 patients were enrolled between February 2009 and February 2010. Antibiotics were prescribed for all except 2 of 563 patients. The majority were 2nd and 3rd generation oral cephalosporins and amoxicillin with or without clavulanic acid. Respiratory viruses were detected in respiratory specimens of 72.5% of patients. Antibiotic use was considered inappropriate in 90.1% and 67.5%, based on guidelines and detected pathogens, respectively. On presentation parents reported antibiotic use for 22% of patients, 41% of parents did not know and 37% denied antibiotic use. Among these three groups, six commonly used antibiotics were detected with HPLC in patients' urine in 49%, 40% and 14%, respectively. Temporary selection of 3rd generation cephalosporin resistant intestinal Enterobacteriaceae during antibiotic use was observed, with co-selection of resistance to aminoglycosides and fluoroquinolones. CONCLUSIONS: We report overuse and overprescription of antibiotics for uncomplicated ARI with selection of resistant intestinal Enterobacteriaceae, posing a risk for community transmission and persistence in a setting of a highly granular healthcare system and unrestricted access to antibiotics through private pharmacies. REGISTRATION: This study was registered at the International Standard Randomised Controlled Trials Number registry under number ISRCTN32862422: http://www.isrctn.com/ISRCTN32862422

    Small representations of finite classical groups

    No full text
    Finite group theorists have established many formulas that express interesting properties of a finite group in terms of sums of characters of the group. An obstacle to applying these formulas is lack of control over the dimensions of representations of the group. In particular, the representations of small dimensions tend to contribute the largest terms to these sums, so a systematic knowledge of these small representations could lead to proofs of important conjectures which are currently out of reach. Despite the classification by Lusztig of the irreducible representations of finite groups of Lie type, it seems that this aspect remains obscure. In this note we develop a language which seems to be adequate for the description of the "small" representations of finite classical groups and puts in the forefront the notion of rank of a representation. We describe a method, the "eta correspondence", to construct small representations, and we conjecture that our construction is exhaustive. We also give a strong estimate on the dimension of small representations in terms of their rank. For the sake of clarity, in this note we describe in detail only the case of the finite symplectic groups.Comment: 18 pages, 9 figures, accepted for publications in the proceedings of the conference on the occasion of Roger Howe's 70th birthday (1-5 June 2015, Yale University, New Haven, CT

    Analytical study of the sth-order perturbative corrections to the solution to a one-dimensional harmonic oscillator perturbed by a spatially power-law potential Vper(x) = λxα

    Get PDF
    In this work, we present a rigorous mathematical scheme for the derivation of the sth-order perturbative corrections to the solution to a one-dimensional harmonic oscillator perturbed by the potential V-per(x) = lambda x(alpha), where alpha is a positive integer, using the non-degenerate time-independent perturbation theory. To do so, we derive a generalized formula for the integral I = integral(+infinity)(-infinity)x(alpha)exp(-x(2))H-n(x)H-m(x)d(x), where H-n(x) denotes the Hermite polynomial of degree n, using the generating function of orthogonal polynomials. Finally, the analytical results with alpha = 3 and alpha = 4 are discussed in detail and compared with the numerical calculations obtained by the Lagrange-mesh method
    • …
    corecore