10,143 research outputs found

    New Era, New Opportunity, Is GES DISC Ready for Big Data Challenge?

    Get PDF
    The new era of Big Data has opened doors for many new opportunities, as well as new challenges, for both Earth science research/application and data communities. As one of the twelve NASA data centers - Goddard Earth Sciences Data and Information Services Center (GES DISC), one of our great challenges has been how to help research/application community efficiently (quickly and properly) accessing, visualizing and analyzing the massive and diverse data in natural hazard research, management, or even prediction. GES DISC has archived over 2000 TB data on premises and distributed over 23,000 TB of data since 2010. Our data has been widely used in every phase of natural hazard management and research, i.e. long term risk assessment and reduction, forecasting and predicting, monitoring and detection, early warning, damage assessment and response. The big data challenge is not just about data storage, but also about data discoverability and accessibility, and even more, about data migration/mirroring in the cloud. This paper is going to demonstrate GES DISCs efforts and approaches of evolving our overall Web services and powerful Giovanni (Geospatial Interactive Online Visualization ANd aNalysis Infrastructure) tool into further improving data discoverability and accessibility. Prototype works will also be presented

    Coupled SDW and Superconducting Order in FFLO State of CeCoIn5_5

    Full text link
    The mechanism of incommensurate (IC) spin-density-wave (SDW) order observed in the Flude-Ferrell-Larkin-Ovchinnikov (FFLO) phase of CeCoIn5_5 is discussed on the basis of new mode-coupling scheme among IC-SDW order, two superconducting orders of FFLO with B1g_{1{\rm g}} (dx2−y2d_{x^{2}-y^{2}}) symmetry and π\pi-pairing of odd-parity. Unlike the mode-coupling schemes proposed by Kenzelmann et al, Sciencexpress, 21 August (2008), that proposed in the present Letter can offer a simple explanation for why the IC-SDW order is observed only in FFLO phase and the IC wave vector is rather robust against the magnetic field.Comment: 3pages, 1 figure, accepted for publication in J. Phys. Soc. Jpn., Vol.77 (2008), No.1

    A Novel Lumbar Motion Segment Classification to Predict Changes in Segmental Sagittal Alignment After Lateral Interbody Fixation.

    Get PDF
    Study designRetrospective cohort study.ObjectivesLateral interbody fixation is being increasingly used for the correction of segmental sagittal parameters. One factor that affects postoperative correction is the resistance afforded by posterior hypertrophic facet joints in the degenerative lumbar spine. In this article, we describe a novel preoperative motion segment classification system to predict postoperative correction of segmental sagittal alignment after lateral lumbar interbody fusion.MethodsPreoperative computed tomography scans were analyzed for segmental facet osseous anatomy for all patients undergoing lateral lumbar interbody fusion at 3 institutions. Each facet was assigned a facet grade (min = 0, max = 2), and the sum of the bilateral facet grades was the final motion segment grade (MSG; min = 0, max = 4). Preoperative and postoperative segmental lordosis was measured on standing lateral radiographs. Postoperative segmental lordosis was also conveyed as a percentage of the implanted graft lordosis (%GL). Simple linear regression was conducted to predict the postoperative segmental %GL according to MSG.ResultsA total of 36 patients with 59 operated levels were identified. There were 19 levels with MSG 0, 14 levels with MSG 1, 13 levels with MSG 2, 8 levels with MSG 3, and 5 levels with MSG 4. Mean %GL was 115%, 90%, 77%, 43%, and 5% for MSG 0 to 4, respectively. MSG significantly predicted postoperative %GL (P < .01). Each increase in MSG was associated with a 28% decrease in %GL.ConclusionsWe propose a novel facet-based motion segment classification system that significantly predicted postoperative segmental lordosis after lateral lumbar interbody fusion

    Ytterbium divalency and lattice disorder in near-zero thermal expansion YbGaGe

    Get PDF
    While near-zero thermal expansion (NZTE) in YbGaGe is sensitive to stoichiometry and defect concentration, the NZTE mechanism remains elusive. We present x-ray absorption spectra that show unequivocally that Yb is nearly divalent in YbGaGe and the valence does not change with temperature or with nominally 1% B or 5% C impurities, ruling out a valence-fluctuation mechanism. Moreover, substantial changes occur in the local structure around Yb with B and C inclusion. Together with inelastic neutron scattering measurements, these data indicate a strong tendency for the lattice to disorder, providing a possible explanation for NZTE in YbGaGe.Comment: 4 pages, 4 figure, supplementary inf

    Tricritical Phenomena at the Cerium γ→α\gamma \to \alpha Transition

    Full text link
    The γ→α\gamma \to \alpha isostructural transition in the Ce0.9−x_{0.9-x}Lax_xTh0.1_{0.1} system is measured as a function of La alloying using specific heat, magnetic susceptibility, resistivity, thermal expansivity/striction measurements. A line of discontinuous transitions, as indicated by the change in volume, decreases exponentially from 118 K to close to zero with increasing La doping and the transition changes from being first-order to continuous at a critical concentration 0.10≤xc≤0.140.10 \leq x_c \leq 0.14. At the tricritical point, the coefficient of the linear TT term in the specific heat γ\gamma and the magnetic susceptibility start to increase rapidly near xx = 0.14 and gradually approaches large values at xx=0.35 signifying that a heavy Fermi-liquid state evolves at large doping. Near xcx_c, the Wilson ratio, RWR_W, has a value of 3.0, signifying the presence of magnetic fluctuations. Also, the low-temperature resistivity shows that the character of the low-temperature Fermi-liquid is changing

    Bisphosphonate's and Intermittent Parathyroid Hormone's Effect on Human Spinal Fusion: A Systematic Review of the Literature.

    Get PDF
    There has been a conscious effort to address osteoporosis in the aging population. As bisphosphonate and intermittent parathyroid hormone (PTH) therapy become more widely prescribed to treat osteoporosis, it is important to understand their effects on other physiologic processes, particularly the impact on spinal fusion. Despite early animal model studies and more recent clinical studies, the impact of these medications on spinal fusion is not fully understood. Previous animal studies suggest that bisphosphonate therapy resulted in inhibition of fusion mass with impeded maturity and an unknown effect on biomechanical strength. Prior animal studies demonstrate an improved fusion rate and fusion mass microstructure with the use of intermittent PTH. The purpose of this study was to determine if bisphosphonates and intermittent PTH treatment have impact on human spinal fusion. A systematic review of the literature published between 1980 and 2015 was conducted using major electronic databases. Studies reporting outcomes of human subjects undergoing 1, 2, or 3-level spinal fusion while receiving bisphosphonates and/or intermittent PTH treatment were included. The results of relevant human studies were analyzed for consensus on the effects of these medications in regards to spinal fusion. There were nine human studies evaluating the impact of these medications on spinal fusion. Improved fusion rates were noted in patients receiving bisphosphonates compared to control groups, and greater fusion rates in patients receiving PTH compared to control groups. Prior studies involving animal models found an improved fusion rate and fusion mass microstructure with the use of intermittent PTH. No significant complications were demonstrated in any study included in the analysis. Bisphosphonate use in humans may not be a deterrent to spinal fusion. Intermittent parathyroid use has shown early promise to increase fusion mass in both animal and human studies but further studies are needed to support routine use

    Light Rays at Optical Black Holes in Moving Media

    Full text link
    Light experiences a non-uniformly moving medium as an effective gravitational field, endowed with an effective metric tensor g~μν=ημν+(n2−1)uμuν\tilde{g}^{\mu \nu}=\eta^{\mu \nu}+(n^2-1)u^\mu u^\nu, nn being the refractive index and uμu^\mu the four-velocity of the medium. Leonhardt and Piwnicki [Phys. Rev. A {\bf 60}, 4301 (1999)] argued that a flowing dielectric fluid of this kind can be used to generate an 'optical black hole'. In the Leonhardt-Piwnicki model, only a vortex flow was considered. It was later pointed out by Visser [Phys. Rev. Lett. {\bf 85}, 5252 (2000)] that in order to form a proper optical black hole containing an event horizon, it becomes necessary to add an inward radial velocity component to the vortex flow. In the present paper we undertake this task: we consider a full spiral flow, consisting of a vortex component plus a radially infalling component. Light propagates in such a dielectric medium in a way similar to that occurring around a rotating black hole. We calculate, and show graphically, the effective potential versus the radial distance from the vortex singularity, and show that the spiral flow can always capture light in both a positive, and a negative, inverse impact parameter interval. The existence of a genuine event horizon is found to depend on the strength of the radial flow, relative to the strength of the azimuthal flow. A limitation of our fluid model is that it is nondispersive.Comment: 30 pages, LaTeX, 4 ps figures. Expanded discussion especially in section 6; 5 new references. Version to appear in Phys. Rev.
    • …
    corecore