342 research outputs found

    Ultrasonic friction reduction in elastomer - Metal contacts and application to pneumatic actuators

    Get PDF
    Ultrasonic friction reduction is well known in metal-metal contacts. Due to the vibration, the stick phase in the contact phase vanishes and only sliding occurs. As long as the macroscopic relative velocity of the contact partners is much lower than vibration velocity, the necessary force to move the parts tends to (nearly) zero. If the effect also exists in material combinations with a significant difference in stiffness and damping characteristic has not been investigated in the past. This contribution shows the effect for various material combinations, which are typical for sealings in pneumatic actuators. Further, a novel integrated transducer design for a pneumatic actuator is presented. In this design the transducer also acts as moving part within the pneumatic actuator. The design challenges are the two contact areas on the moving part, where the friction reduction and consequently high vibration amplitudes are needed. The first area is fixed on the transducer geometry, the other is moving along the piston. This novel design has been implemented in the laboratory; detailed experimental results are presented in this contribution

    The effect of social balance on social fragmentation

    Get PDF
    With the availability of cell phones, internet, social media etc. the interconnectedness of people within most societies has increased drastically over the past three decades. Across the same timespan, we are observing the phenomenon of increasing levels of fragmentation in society into relatively small and isolated groups that have been termed filter bubbles, or echo chambers. These pose a number of threats to open societies, in particular, a radicalisation in political, social or cultural issues, and a limited access to facts. In this paper we show that these two phenomena might be tightly related. We study a simple stochastic co-evolutionary model of a society of interacting people. People are not only able to update their opinions within their social context, but can also update their social links from collaborative to hostile, and vice versa. The latter is implemented such that social balance is realised. We find that there exists a critical level of interconnectedness, above which society fragments into small sub-communities that are positively linked within and hostile towards other groups. We argue that the existence of a critical communication density is a universal phenomenon in all societies that exhibit social balance. The necessity arises from the underlying mathematical structure of a phase transition phenomenon that is known from the theory of a kind of disordered magnets called spin glasses. We discuss the consequences of this phase transition for social fragmentation in society

    Predicting collapse of adaptive networked systems without knowing the network

    Get PDF
    The collapse of ecosystems, the extinction of species, and the breakdown of economic and financial networks usually hinges on topological properties of the underlying networks, such as the existence of self-sustaining (or autocatalytic) feedback cycles. Such collapses can be understood as a massive change of network topology, usually accompanied by the extinction of a macroscopic fraction of nodes and links. It is often related to the breakdown of the last relevant directed catalytic cycle within a dynamical system. Without detailed structural information it seems impossible to state, whether a network is robust or if it is likely to collapse in the near future. Here we show that it is nevertheless possible to predict collapse for a large class of systems that are governed by a linear (or linearized) dynamics. To compute the corresponding early warning signal, we require only non-structural information about the nodes’ states such as species abundances in ecosystems, or company revenues in economic networks. It is shown that the existence of a single directed cycle in the network can be detected by a “quantization effect” of node states, that exists as a direct consequence of a corollary of the Perron–Frobenius theorem. The proposed early warning signal for the collapse of networked systems captures their structural instability without relying on structural information. We illustrate the validity of the approach in a transparent model of co-evolutionary ecosystems and show this quantization in systems of species evolution, epidemiology, and population dynamics

    A new ammonia sensor based on a porous SiC membrane

    Get PDF

    Nonfactorizable contributions in B decays to charmonium: the case of B−→K−hcB^- \to K^- h_c

    Full text link
    Nonleptonic BB to charmonium decays generally show deviations from the factorization predictions. For example, the mode B−→K−χc0B^- \to K^- \chi_{c0} has been experimentally observed with sizeable branching fraction while its factorized amplitude vanishes. We investigate the role of rescattering effects mediated by intermediate charmed meson production in this class of decay modes, and consider B−→K−hcB^- \to K^- h_c with hch_c the JPC=1+−J^{PC}=1^{+-} cˉc\bar c c meson. Using an effective lagrangian describing interactions of pairs of heavy-light QqˉQ{\bar q} mesons with a quarkonium state, we relate this mode to the analogous mode with χc0\chi_{c0} in the final state. We find B(B−→K−hc){\cal B}(B^- \to K^- h_c) large enough to be measured at the BB factories, so that this decay mode could be used to study the poorly known hch_c.Comment: RevTex, 16 pages, 2 eps figure

    Preceding rule induction with instance reduction methods

    Get PDF
    A new prepruning technique for rule induction is presented which applies instance reduction before rule induction. An empirical evaluation records the predictive accuracy and size of rule-sets generated from 24 datasets from the UCI Machine Learning Repository. Three instance reduction algorithms (Edited Nearest Neighbour, AllKnn and DROP5) are compared. Each one is used to reduce the size of the training set, prior to inducing a set of rules using Clark and Boswell's modification of CN2. A hybrid instance reduction algorithm (comprised of AllKnn and DROP5) is also tested. For most of the datasets, pruning the training set using ENN, AllKnn or the hybrid significantly reduces the number of rules generated by CN2, without adversely affecting the predictive performance. The hybrid achieves the highest average predictive accuracy

    An oncogenic role for sphingosine kinase 2

    Get PDF
    While both human sphingosine kinases (SK1 and SK2) catalyze the generation of the pleiotropic signaling lipid sphingosine 1-phosphate, these enzymes appear to be functionally distinct. SK1 has well described roles in promoting cell survival, proliferation and neoplastic transformation. The roles of SK2, and its contribution to cancer, however, are much less clear. Some studies have suggested an antiproliferative/ pro-apoptotic function for SK2, while others indicate it has a prosurvival role and its inhibition can have anti-cancer effects. Our analysis of gene expression data revealed that SK2 is upregulated in many human cancers, but only to a small extent (up to 2.5-fold over normal tissue). Based on these findings, we examined the effect of different levels of cellular SK2 and showed that high-level overexpression reduced cell proliferation and survival, and increased cellular ceramide levels. In contrast, however, low-level SK2 overexpression promoted cell survival and proliferation, and induced neoplastic transformation in vivo. These findings coincided with decreased nuclear localization and increased plasma membrane localization of SK2, as well as increases in extracellular S1P formation. Hence, we have shown for the first time that SK2 can have a direct role in promoting oncogenesis, supporting the use of SK2-specific inhibitors as anti-cancer agents.Heidi A. Neubauer, Duyen H. Pham, Julia R. Zebol, Paul A.B. Moretti, Amanda L. Peterson, Tamara M. Leclercq, Huasheng Chan, Jason A. Powell, Melissa R. Pitman, Michael S. Samuel, Claudine S. Bonder, Darren J. Creek, Briony L. Gliddon and Stuart M. Pitso

    Resonant and nonresonant D+ -> K- pi+ l+ nu(l) semileptonic decays

    Full text link
    We analyse the semileptonic decay D+ -> K- pi+ l+ nu(l) using an effective Lagrangian developed previously to describe the decays D -> P l nu(l) and D -> V l nu(l). Light vector mesons are included in the model which combines the heavy quark effective Lagrangian and chiral perturbation theory approach. The nonresonant and resonant contributions are compared. With no new parameters the model correctly reproduces the measured ratio Gamma(nres)/Gamma(nres + res). We also present useful nonresonant decay distributions. Finally, a similar model, but with a modified current which satisfies the soft pion theorems at the expense of introducing another parameter, is analyzed and the results of the models are compared.Comment: 17 pages, 3 Postscript figures, standard Latex, extended revision, title, abstract and text (especially Sec. IV) changed, results unchange

    Conversations on grief and hope: A collaborative autoethnographic account exploring the lifeworlds of international youth engaged with climate action

    Get PDF
    This paper explores the lifeworlds of international youth involved in climate and/or environmental social action, narratives that have been largely absent from a literature that has tended to focus on ‘traditional’ youth activists located in the urban Global North. Written as a novel collaborative autoethnography involving youth as co-authors, the paper a) collectively reflects on the stories of youth from different countries and cultures on their journeys towards climate action, and b) foregrounds an emotional framing to examine these experiences. The youth co-authors, whose experiences are the focus of this paper, form part of innovative international Youth Advisory Board, set up to provide peer support to youth new to climate and environmental social action, as part of our British Academy Youth Futures-funded participatory action research project. We examine the youth’s narratives exploring opportunities and barriers they have navigated, their inspirations and the intersections with a range of other socio-cultural factors

    Novel activation of peroxymonosulfate by biochar derived from rice husk toward oxidation of organic contaminants in wastewater

    Get PDF
    In this study, novel activation of peroxymonosulfate (PMS) by biochar derived from rice husk (generally considered useless agricultural wastes in Vietnam) toward organic pollutants from wastewater was investigated. The basic properties of biochar were characterized through field-emission scanning electron microscopy (FE-SEM), elemental analysis (EA) and gas adsorption analysis (BET). Operating parameters including PMS concentration, dose of biochar and initial concentration of target pollutants (tetracycline and bisphenol A) were systematically studied. The results showed that biochar derived from rice husk effectively activated of PMS, leading to high degradation of organic pollutants in wastewater. The degradation efficiency of organic pollutants increased with increasing PMS concentration and amount of biochar. The reuse of rice husk biochar and the possible mechanism for PMS activation were proposed accordingly. In addition, the evaluation of potential available rice husk biomass in Vietnam was discussed. These findings suggest a novel rice husk biochar for activation of PMS toward toxic organic pollutants from wastewater
    • 

    corecore