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With the availability of cell phones, internet, social media etc. the interconnectedness of peo-
ple within most societies has increased drastically over the past three decades. Across the same
timespan, we are observing the phenomenon of increasing levels of fragmentation in society into
relatively small and isolated groups that have been termed filter bubbles, or echo chambers. These
pose a number of threats to open societies, in particular, a radicalisation in political, social or cul-
tural issues, and a limited access to facts. In this paper we show that these two phenomena might
be tightly related. We study a simple stochastic co-evolutionary model of a society of interacting
people. People are not only able to update their opinions within their social context, but can also
update their social links from collaborative to hostile, and vice versa. The latter is implemented such
that social balance is realised. We find that there exists a critical level of interconnectedness, above
which society fragments into small sub-communities that are positively linked within and hostile
towards other groups. We argue that the existence of a critical communication density is a universal
phenomenon in all societies that exhibit social balance. The necessity arises from the underlying
mathematical structure of a phase transition phenomenon that is known from the theory of a kind
of disordered magnets called spin glasses. We discuss the consequences of this phase transition for
social fragmentation in society.

Keywords: Opinion formation, co-evolutionary dynamics, social balance, phase transitions, spin
glass, adaptive networks, social fragmentation, social cohesion

I. INTRODUCTION

Social cohesion and social fragmentation are central
topics in the organisation and functioning of large-scale
societies. As such it is a central topic in sociology since
its very beginning. Starting with Durkheim [1], who re-
ferred to the mutual dependencies between individuals as
“organic solidarity”, the concept of social cohesion has
evolved, however, it remains a core theme in sociology
[2–4]. Over the past two decades, concerns have been
raised that modern societies might gradually be losing
their cohesion [5–10]. This has been attributed to sev-
eral ongoing changes: globalisation, migration and ethno-
cultural diversity, modern communication technologies,
and the integration of states into trans-national entities,
such as the European Union [11]. As the cohesion of
a society declines, it faces the threat of becoming frag-
mented, which might come with a number of potentially
catastrophic consequences, such as riots, civil wars, gov-
ernmental shutdowns, or the decline of democracy [12].
Hence it has become a great challenge of how to preserve
social cohesion without interfering with diversity [13, 14].

Despite the lack of a consensus on what constitutes so-
cial cohesion, social relations have been widely regarded
among the most essential aspects [11]. Both, social co-
hesion and fragmentation, emerge from complex inter-
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actions between individuals. One mode of collective so-
cial organisation can change to another if interactions
change: individuals initially united by cooperation for
a common good can become segregated once they start
competing for their ethno-cultural, economical, or polit-
ical values (or identities) [15]. In many societies tran-
sitions between fragmented and cohesive “phases” hap-
pen throughout history [16]. In line with this view, here
we define fragmentation as the regime (phase) in which
society-wide collaborative efforts are broken down into
local cooperation within subcommunities, with little or
no collaboration between these groups.

A. New social media and social fragmentation

Local interactions between individuals shape and de-
fine the nature and quality of the overall social organisa-
tion. Novel communication technologies affect both the
quality and the quantity of social interactions and thus
might have a crucial impact on social cohesion. Among
these new possibilities the effect of social media on so-
cial cohesion has been studied [17]. On the one hand,
social media may create so-called echo chambers in polit-
ical discourse [18, 19], where individuals reinforce their
current position by repeated interactions with those of
the same view. On the other hand, social media in-
creasingly guide individuals to contents they are likely to
agree with, resulting in the danger of so-called filter bub-
bles [20, 21]. These phenomena might play an important
role in the radicalisation of political discourse and the
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decline of cross-ideological exposure – one of the build-
ing blocks of democracy [22]. Recently, several models
have been proposed to better understand the formation
of echo chambers and filter bubbles, as well as their ef-
fects on fragmentation [23–25].

B. Modelling of social fragmentation

Modelling social fragmentation has a long history [26].
In the context of cultural dynamics, Axelrod predicted
fragmentation into cultural groups if individuals within
a given “social neighbourhood” are more likely to interact
with similar others than with dissimilar ones [27]. The
more they interact with each other, the more similar they
become and thus the higher the chance is for future in-
teractions. The dynamics continues until stable regions
of identical individuals are established. However, the for-
mation of such cultural regions is observed only for small
societies; large societies reach global consensus. Recent
research pointed out two properties of the Axelrod model,
namely, the fragility of the fragmented phase with respect
to random perturbations, such as the “mutation” of cul-
tural features [28], and the fact that the transition from
complete homogeneity to cultural diversity only happens
beyond a critical number of alternative traits per feature
[29]. These shortcomings were later resolved by replac-
ing the interpersonal influence in the original model by
social influence [30, 31]. In the context of segregation,
Schelling’s celebrated model for the distribution of people
of different races, assumes that individuals prefer to be
in a neighbourhood with the majority of their own type
[32]. Complete segregation into clusters of one type oc-
curs as they move from one neighbourhood to another to
satisfy their preferences. Subsequent research has shown
that this way to understand segregation is quite robust
[33]. Axelrod’s and Schelling’s models both explain frag-
mentation (segregation) as an emergent collective phe-
nomenon that results from individuals’ incentives only.
A question that remains open, however, is how the tran-
sition from cohesion to fragmentation corresponds to the
rearrangement of social ties.

1. Theory of social cohesion – structural balance

One of the seminal ideas in sociology of the 20th cen-
tury was the concept of structural balance, which is based
on the observation that social dynamics in cliques of in-
dividuals is determined less by pair-wise, but by triadic
relations, i.e. triangle relations become the more fun-
damental unit. Structural balance theory was first pro-
posed by Heider in the 1940s [34] and states that a group
of three individuals forms a balanced triangle, if either
all the three are mutually friends (positive relation) or
two of them are friends and both have the same enemy
(negative link). Three people form an unbalanced triad
or triangle, if either all the three are mutual enemies,
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FIG. 1: Balanced and unbalanced triangles. Red lines de-
noted with a plus sign represent friendly and cooperative re-
lations between individuals i, j, and k. Dashed blue lines
(minus) are negative or hostile links. A link between node i
and j is denoted by Jij . It can be Jij = +1 or Jij = −1.
A triangle is called balanced, if the product of its three link
states is JijJjkJki = 1, and unbalanced, if the product is
JijJjkJki = −1. The first two triangles are balanced, while
the second two are not.

or if two of them are enemies but the third is their mu-
tual friend, see Fig. 1. Empirically, balanced triangles
are found much more frequently than unbalanced ones in
human societies, for a list of recent results, see e.g. [35–
47]. If an unbalanced situation occurs, individuals seem
to strive to eliminate the associated tension by flipping
the sign of one of the three links, resulting in a balanced
arrangement. A perfectly balanced society would be one
in which there are no unbalanced triangles – all individu-
als enjoy life without any tension. In contrast, a cohesive
but not stress-free society is more conducive to change
and/or improvement.

2. Our definition of social fragmentation

From what has been discussed so far it is clear that
one must distinguish between different concepts of social
fragmentation: urban fragmentation, segregation, social
balance, loss of coherence because of evaporation of joint
ideals, etc. These concepts all capture various aspects
of social cohesion. For the following, we are interested
in a broad and generic definition of social fragmentation,
closely following Heider’s notion of social balance: We
call a society fragmented if there are many groups that
are locally collaborative with a high density of “positive
links” within the group, but are often hostile to other
groups. On the other hand, a society is cohesive if one
finds a sufficient density of positive links between groups,
such that one can “travel” from group to group, without
ever having to use negative links. In other words, we
define a society as cohesive, if the positive links percolate.

3. Co-evolution and adaptive networks

Collective dynamics of social systems has been stud-
ied within the framework of adaptive networks; for an
overview see e.g. [48]. In this approach, fragmentation
results from a co-evolutionary rearrangement of social
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ties, together with updates of individual traits (“states”)
[49]. In [50], new relationships are created between peo-
ple of the same opinion by rewiring pre-existing connec-
tions with a given probability. As the rewiring rate in-
creases, the system self-organises into many communi-
ties, such that members of the same community converge
on their opinions, but strongly differ from members of
other groups. In a modification of the original Axelrod
model [51] links between dissimilar agents (with no fea-
ture in common) are replaced by links between agents
who may be either similar or dissimilar. This mechanism
was shown to change the network structure from a regular
lattice to a network with multiple clusters and to signif-
icantly increase the critical point of the transition from
a mono- to a multicultural regime. In [52] only links be-
tween agents whose opinions differ from each other more
than a tolerance level may be broken. New links are es-
tablished to other agents, regardless of their opinions.
As a consequence, the transition from consensus towards
fragmentation happens at a lower tolerance level than on
fixed networks.

4. Earlier models on opinion formation

Many previous approaches towards modeling social dy-
namics focused on a setting where individuals are char-
acterised by a number of socio-economic traits. These
become dynamical variables and one cam study their col-
lective evolution with numerical methods. This direction
has shaped the field of opinion dynamics [53, 54]. Influ-
ential models in this field are DeGroot’s model of belief
consensus [55], the voter model [56, 57], and the majority-
rule model [58]. A generic and unrealistic feature of these
models is that generally global consensus is established
among the agents, regardless of the detailed dynamics or
the underlying network structures. There are, however,
models that do exhibit either consensus or opinion frag-
mentation. They either rely on the “bounded confidence”
assumption that states that only those whose opinions
differ less than a given level can interact [59, 60], or they
employ the fact that individuals only adopt their views
once a certain fraction of their neighbours did [61, 62].
Both types of models show a phase of global consensus
if the confidence level (fraction of neighbours) exceeds a
critical value. Below this threshold, clusters of different
opinions of various sizes appear.

5. Opinion dynamics on signed networks

The first attempt to incorporate Heider’s social
balance into opinion dynamics was in [63–65]. They
showed that an opinion formation process on a balanced
network ends up in polarised states, where contradictory
opinions are clustered into two groups. This result was
extended to the case of time-varying signed graphs in
[66, 67], however, there opinion- and network dynamics

are not coupled. In yet another class of models that is
based on the Hebbian learning rule [68] the weight of
the social link between two individuals is assumed to be
a function of the correspondence between their states.
As their opinions evolve over time, the weight increases
(decreases) proportional to their opinion concordance
(discordance). Fragmentation has been shown to emerge
from such adaptive dynamics, [69, 70]. There the
network only reacts to the change of opinions, but
does not emerge from Heider’s principle of minimising
social tension. Saeedian et al. [71] recently consider a
co-evolutionary dynamics where not only friends with
opposite opinions but also enemies with similar ones
can change either their opinions or their relations to
remove cognitive dissonance. In the final frozen states,
the network fragments into groups of friendly and
like-minded individuals who, however, are hostile to
members of the other groups.

In this paper we propose to understand the mecha-
nism of social fragmentation as a consequence of social
balance. To this end we study a minimalistic stochastic,
co-evolutionary model where individuals tend to avoid so-
cial stress by either adopting their opinions, or by chang-
ing their social links from cooperative to hostile, or vice
versa. Heider’s concept of social balance is explicitly
taken into account by co-evolutionary evolution mech-
anism, rather than being imposed a priori or emerging
from the dynamics of the social network alone. We will
see that the model allows us to understand the emer-
gence of echo chambers and filter bubbles as a function
of the average connectivity of the society. We find a fun-
damental regime shift (or phase transition) that happens
at critical values of social connectivity. Below the criti-
cal density we observe a largely cohesive society, above it
there exists an unavoidable phase that is dominated by
the existence of many small collaborative communities,
characterised by hostile links towards other groups.

II. THE MODEL

A. A co-evolutionary model of opinion- and social
network formation

We assume that a society is made up by N individuals
that we label by latin indices, i. Each of these indi-
viduals is embedded in a social network and has social
relations to ki fellow individuals that are labelled by j.
We keep the average number of links per person k = k̄i
as a model parameter. This number is assumed to be
fixed over time. Each relation between i and j can be
either positive, Jij = 1, e.g. if they are friends, or neg-
ative, Jij = −1, if they are enemies. If two individuals
are linked with a negative link this indicates a certain
level of social stress. Each individual is endowed with an
opinion, si. For simplicity we assume that there exists
only one type of binary opinion, of the type: yes or no,
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Regular graph Small-world

FIG. 2: Network structure of our model society. Nodes repre-
sent individuals who have binary opinions that are displayed
as either ↑ or ↓. Individuals are either linked by positive (red)
or negative (blue) social ties. (a) shows a regular network
topology, i.e. every node has the same number of neighbours;
here k = 4. In (b) nodes are linked to others in a small world
network that can be obtained from (a) by randomly rewiring
one side of any link with probability of ε = 0.2. Not everyone
has the same number of neighbours anymore.

Trump or Hillary, etc. In Fig. 2 we show a schematic pic-
ture of our model society in the simplest case, where a
total of N individuals with opinions (↑ and ↓) are linked
to k neighbours each in a regular way (a) and in a so-
called small world network [72] (b) with the same average
connectivity, k.

Imagine that two individuals are linked through a pos-
itive link and they have opposite opinions on a given sub-
ject. We assume that this will cause a certain amount of
social stress in the system. If, on the contrary, the two in-
dividuals do not like each other, Jij = −1, and they have
opposite opinions, this will not lead to additional social
stress. Both, the opinions and the quality of the social
links, can be updated. Whenever i changes her opinion,
we have si = 1 → si = −1, or si = −1 → si = 1. The
same is true for social links, whenever we change friend-
ship to enmity, Jij = 1 → Jij = −1, or vice versa. We
assume that on average individuals tend to update their
opinions and social links such that they reduce their local
levels of social stress. To keep track of the total amount
of social stress, we introduce a function, H, which al-
lows us to formulate a simple stochastic co-evolutionary
model.

B. Minimising social stress – a Hamiltonian
approach

The system under study evolves to minimise overall
social tension, which can be defined as

H = −
∑
(i,j)

Jijsisj − g
∑

(i,j,k)

JijJjkJki , (1)

where si ∈ {−1, 1} denotes the opinion of an individual
i and Jij ∈ {1,−1} represents friendship and enmity be-
tween two connected agents i and j, respectively (Jij = 0,
if they are not linked). This type of cost function is called

a Hamiltonian function in physics, where it captures the
total energy in a system as a function of its configuration,
H = H(si, Jij). There it is then used to implement the
principle of minimisation of energy.

In Eq. (1), the first sum describes the opinion adop-
tion process between interacting agents. It assumes that
individuals should act in such a way as to avoid cogni-
tive dissonance among them: if i and j are friends, they
are more likely to share the same view, otherwise, they
may hold opposing opinions. Following the “social influ-
ence” theory by [73–75], for any individual i, the simul-
taneous influences from all its neighbours are represented
by the sum over j of (Jijsj)si terms. The second term
explicitly takes care of Heider’s social balance: it incor-
porates the tendency of suppressing unbalanced triangles
between individuals. This effect is implemented by the
sum over all possible triadic relations between any three
individuals i, j, and k. If JijJjkJki = 1, they feel no
social tension, otherwise social balance pushes them to
switch their relations. Note that a link between i and
j, Jij , in general will belong to several triangles. A flip
of Jij that lowers the total number of unbalanced tri-
ads should happen with a higher probability than a flip
that leads to an increase of unbalanced triangles, i.e. in-
creases overall social stress. See the next subsection for
how this is implemented. The parameter g in Eq. (1)
controls the relative strength of the social balance term
with respect to the opinion formation contribution (first
term). In accordance with Heider’s theory, g must be
positive so that balanced triangles do indeed dominate
the unbalanced ones1.

Figure 3 shows an example for how four individuals
with given initial opinions and links can change social
stress, H, by flipping either opinions or links. The con-
figuration starts with a situation that amounts to H = 2.
When node 4 flips its opinion from ↑ to ↓, social stress is
decreased to H = 0. Next, node 1 flips its opinion to ↑
and increases stress to H = 2. This is not what happens
usually, but since the dynamics is stochastic, these situa-
tions will also occur. In the next step, node 2 flips from ↑
to ↓ and thereby lowers social stress to H = −4. Finally,
by 1 and 4 flipping their link from positive to negative,
we arrive at a relatively stress-free situation, H = −10,
that is socially balanced.

1 At this point it is not clear how to empirically infer the value of
g for a given society. We chose g ∈ [0, 1] in the model implemen-
tation. In fact, any non-negligible value, g 6= 1, can be shown to
yield similar results as g = 1 (see SI). This choice corresponds to
the assumption that the effect of social balance is comparable in
importance to the opinion terms (social influence) in Eq. (1). As
long as the number of links and that of triangles are of the same
order of magnitude (as is the case in sparse networks), it seems
reasonable to keep the contribution of the Heider term compa-
rable to that of opinions. In physics the case g = 0 corresponds
to the classical Edwards-Anderson spin glass model [76], while
the other extreme, g → ∞, corresponds to the model studied in
[77–79].
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FIG. 3: Example for how social stress, H, is gradually lowered in a sequence of changes of opinions and links between four
individuals (assuming g = 1 for simplicity). Opinions of the nodes are given by ↑ and ↓, positive links are red, negative are
blue. In the course of this sequence the number of balanced triangles changes from two to four. Note that in the second step
social stress is temporarily increased. This is a consequence of the stochastic nature of the model, where also unfavourable
events happen from time to time.

C. A stochastic co-evolutionary model – the
Metropolis algorithm

The social stress function, H, now specifies the way by
which the dynamical variables, si and Jij , change over
time. Assuming that humans generally tend to reduce
social stress, changes that decrease H are favoured over
those increasing it. We implement the joint evolution of
opinions and links by the so-called Metropolis algorithm
[80]. Starting from a random configuration of opinions
and links, the society is updated from one timestep t to
the next as follows:

1. Compute H of the current system, assume it has a
value of H0.

2. Pick a node i at random and flip its opinion, si.
Compute H again, it is now H1. If the value of
H has decreased in response to the flip, H1 ≤ H0,
accept the flip. If the value of H increased, accept
the flip only with probability, p = e−∆H/T , where
∆H = H1−H0 is the difference of stress before and
after the flip. T denotes the “social temperature”
and is a model parameter. Pick the next node ran-
domly and continue until N × n opinion updates
have been performed (Monte Carlo iterations).

3. Compute H of the system at this point, assume
that it is now H̃0. We now pick one link randomly,
Jij , and flip it. Compute H again, and assum-

ing it to be H̃1, we accept the flip if H̃1 ≤ H̃0,

and accept it with probability p′ = e−∆H̃/T , where
∆H̃ = H̃1 − H̃0, if H̃1 > H̃0. For simplicity, we
assume that T is the same as in step 2.

4. Continue with the next timestep.

The parameter n controls the relative update rate be-
tween opinions and links. The relative frequency of opin-
ion updates versus link updates is nN . Depending on the
choice of n, which can range from zero to infinity, (and
depending on the initial conditions), the opinions may
or may not be given enough time to converge towards a
steady state between link updates; in other words they

may or may not have enough time to “equilibrate”. In
the SI we show the consequences of different choices of
n. In the main body of the paper we set n = 1. Here we
are interested in a true co-evolutionary dynamics, which
is guaranteed for this choice of n and the range of N ’s
considered in the paper. Appropriate care needs to be
taken when larger systems are studied to ensure that the
co-evolution is correctly implemented.

The parameter T is a kind of ‘social temperature’ that
characterises the average volatility of individuals in a so-
ciety [81]. The higher T is, the more volatile on average
an individual is. This means that he or she is more likely
to update his/her opinion and social ties, regardless of
which flips reduce social stress. The update rules speci-
fied by p and p′ are based on the intuition that a change
that reduces social stress (lower H) is more favourable
than one that increases it. The choice of an exponential
function is for convenience only and has no particular
meaning (as it has in physics).

D. Social coherence through external influences

Opinion formation is not a purely endogenous pro-
cess. It can be influenced strongly by external influ-
ences, such as religion, nationalism, and so on. Within
the proposed framework, such influences can be included
with additional terms in the H function. We propose to
study a term that discourages people from maintaining
hostile links. This could be the message of an exoge-
nous religious or moral norm (“love all the others”), or
some nationalist propaganda that suggests that people
of the same nation should be unconditionally friendly
to one another. To this end, whenever we want to
model exogenous pro-social pressure, we add a third
term, (h/2)

∑
(i,j)(1 − Jij), where h > 0, to Eq. (1).

Clearly, this term will suppress negative links in the so-
ciety.
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E. Characterising modes of collective
behaviour—order parameters for social

fragmentation

To characterise the degree of social cohesion or frag-
mentation we have to define appropriate quantities that
we call order parameters. In the theory of phase tran-
sitions [82], order parameters signal regime shifts from
one phase into another. To quantify the degree of social
fragmentation we use the following measures:

1. Size distribution of echo chambers

A clear signal for social fragmentation is the distribu-
tion of cluster sizes. In a fragmented society there exists
a large number of small groups of individuals that co-
operate within their group but are hostile towards other
groups. We detect these clusters by minimising the num-
ber of positive relations between them and that of neg-
ative links within them [83–85]. By doing that, most
of the negative links will be found between the clusters.
Further, in agreement with the notion of echo chambers
in the literature, from the detected “positive” clusters,
we select those that consist of only like-minded agents
and identify them as echo chambers. The size of an echo
chamber is thus given by the number of such nodes, and
is denoted by S(E), where E denotes the chamber.

2. A measure for polarisation, f

We introduce a simple network variable, f , to measure
the level of social balance in the society. It is defined as
the difference of the fractions of balanced and unbalanced
triangles in the network:

f =
n+ − n−
n+ + n−

, (2)

where n+ and n− are the number of balanced and un-
balanced triangles, respectively. f = 1 means that all
triangles are balanced, f < 1 signals that unbalanced
triangles are present. Even though f could be negative,
this situation is never observed in simulations. This is in
agreement with both Heider’s intuition and the empiri-
cal evidence obtained in real social networks, where the
value of f is typically above 0.7 [39]. The case f → 0 cor-
responds to an equal number of balanced and unbalanced
triangles. From Harary’s result2 [86], it follows that if the

2 A network is balanced if it consists of only balanced cycles (tri-
angles are a special case of cycle of length 3). His theorem states
that a signed graph is balanced if and only if the set of nodes
can be partitioned into two disjoint subsets (one of which may
be empty), such that all links between nodes of the same subset
are positive, and all links between nodes of the different subsets
are negative.

network can be partitioned into strictly positive clusters,
within which all links are positive and between which
links are exclusively negative, then f = 1. In reverse, the
case, f = 1, is not sufficient to imply such a partition
for sparse networks; however, high values of f (f → 1)
generally correspond to a clustering that is close to this
partition.

3. A measure for group homogeneity, mg

We need a quantity to characterise how opinions are
distributed within groups. If a society fragments, it re-
organises into sub-communities (clusters) of mutually be-
friended individuals who would be expected to hold simi-
lar opinions. We can measure the average level of opinion
homogeneity within a group by

mg =

〈
1

S(Ck)

∣∣∣∣∣∑
i∈Ck

si

∣∣∣∣∣
〉
Ck

, (3)

where Ck denotes the k-th positive cluster found by the
community detection method [83–85]. The average, 〈.〉Ck ,
is taken over all the detected clusters. By definition, mg

is the average of the absolute values of the local (binary)
opinions over all groups so that mg ∈ [0, 1]. mg = 1 if
and only if all clusters are composed of like-minded indi-
viduals only. However, opinions may be different between
individuals belonging to different clusters. On the con-
trary, mg = 0 corresponds to a totally cohesive society
that consists of either one or many groups of befriended
individuals but there is no opinion that dominates in any
one of these groups. Intermediate values of mg ∈ (0, 1)
signal that within a group opinions vary and there is no
consensus among its members.

4. A measure for opinion diversity, m

As a simple measure for the opinion diversity across
groups we compute the overall opinion of the society

m =
1

N

∣∣∣∣∣
N∑
i

si

∣∣∣∣∣ . (4)

By definition, m ∈ [0, 1]. The lower m is, the more di-
verse opinions are. Opinions are aligned across society
if m → 1. This measure can also serve as a probe of
how fast opinions can converge to a consensus. This is
important because in real social contexts one can change
opinions and friends (or enemies) within a limited life-
time. Therefore, convergence times do matter and must
be studied in detail. The time required for the system
to equilibrate from different initial conditions may vary
strongly.
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FIG. 4: Phase diagram of the stochastic co-evolutionary
model with social balance. The balance level f is shown as
a function of the average network degree, k, and social tem-
perature, T . A clear phase separation line is visible. Below
it, for low values of connectivity and high T , there exits a so-
cially coherent phase (blue), above the line there is a phase of
social fragmentation (yellow). Empirically reasonable values
of f around 0.7 are indicated with a white box. Results were
obtained for regular lattices (ε = 0), g = 1, N = 400 and are
averaged over 500 realisations. Random initial conditions in
links and opinions.

III. RESULTS

We simulate the model given in Eq. (1) for the param-
eter choices of N = 400, and g = 1. We first discuss the
phase diagram of the model and its consequences.

A. Phase diagrams

The central result of this paper is shown in Fig. 4 that
shows f (in colour code) as a function of the average con-
nectivity, k, and social temperature, T . There is a clear
separation line at which the society transitions from a
well mixed situation with f ∼ 0.1 (blue) to a fragmented
one, characterised by f ∼ 1 (yellow). In the yellow re-
gion, the emergent networks are strongly balanced and
opinion clusters exist. These polarised clusters disap-
pear and opinions become randomly distributed amongst
agents in the dark blue region, where there are as many
balanced as unbalanced triangles. Note, that values of
f ∼ 0 are unrealistic. Real societies are balanced and
show empirical values in a range around f ∼ 0.7 [36, 39].
We indicate the realistic region with a white box. As-
suming that a given society is found somewhere in the
realistic region, say at a fixed T , it only takes a small
increase of social connectivity, k, for the society to be
pushed into the fragmented filter bubble phase. In recent
years the average connectivity has certainly increased in
societies, making it easier for them to transition into the
fragmented regime. The result in Fig. 4 is obtained for a
regular lattice (ε = 0). We confirmed that the existence
of the separation line also holds for small world network
topologies; see also below.
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FIG. 5: Distributions of echo chamber sizes as a function
of average connectivity, k, and social temperature, T . Echo
chambers are defined as groups of friendly agents who hold
the same opinion. The left column represents the situation
in the fragmented phase (low temperature T = 1). The right
column is in the cohesive phase. The upper panels show an
average connectivity of k = 8, the lower ones k = 4. Clearly,
in the fragmented phase there appear significant groups of all
sizes that are characterised by uniform opinions and positive
relations within, and hostile relations towards others. The
insets show the size distribution of the detected “positive”
clusters, Ck. These are groups of cooperating individuals,
where any two members of the same group can be connected
by a path consisting of positive links only. In the cohesive
phase there exist positive clusters of maximal sizes (S(Ck) =
400), meaning that the whole society can cooperate despite a
diversity in opinions. Same model parameters as in previous
figure.

B. Size distribution of echo chambers

We show the echo chamber size distribution for vari-
ous values of T and k in Fig. 5. The left column shows
the situation for small social temperature, T = 1, the
right column shows T = 5. The upper panels show a
high average connectivity, k = 8, while the lower ones
correspond to k = 4 neighbours. The left column cor-
responds to the fragmented phase, the right column to
the cohesive phase. It is clearly visible that deep in the
fragmented phase there is a broad distribution of echo
chamber sizes, spreading to sizes of about 100 for k = 8
and to sizes of about 20 for k = 4. In the right column
we observe sharply peaked distributions with maximum
cluster sizes of about 2-3, meaning that there is no large
cluster of unique opinion forming. This corresponds to a
society where different opinions co-exist. The insets show
the size distribution of the “positive” clusters Ck found
by the community detection method. Note that in (b)
there is a small peak at 400, which is the maximal size of
a cluster. This indicates the possibility of global cooper-
ation of the whole society in the cohesive phase even if
opinions are diverse.
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C. Robustness

To find out if results are robust with respect to changes
of parameters, we perform a series of robustness checks.

We first test the dependence on the size N of the so-
ciety. For a fixed value of k = 8 we show a section of
the phase diagram in Fig. 6 (a) for various system sizes,
N = 50, 100, 400 on regular networks. Clearly, there is
no visible size dependence. It can be safely assumed that
this will also hold when taking N → ∞3. This result
is not unexpected since we keep the connectivity smaller
than N .

In Fig. 6 (b) we show the effect of the average con-
nectivity on the results, where we fix N = 400 and com-
pute f for various values of k. As we already noted in
Fig. 4 with increasing k the phase diagram is shifted to-
wards the fragmented phase (yellow region in the phase
diagram). The transition appears to be discontinuous
(first-order), meaning that f jumps as a function of the
temperature variable. Fig. 6 (b) also demonstrates a
hysteresis effect (visible for k = 30), which often accom-
panies first order transitions. This can be understood in
the following way: If in Fig. 6 (b) we increase T , f starts
to gradually decrease, and then drops rapidly to much
lower values. If at that point one would start decreasing
T , f would not immediately jump up to previous levels,
but remain low until at a lower T it would finally jump
upward again. See arrows in the figure.

To test if the particular network structure has an in-
fluence on the results, we computed the phase diagrams
with small-world networks [72]. The small-world param-
eter, ε, controls the probability to re-connect a link from
any node to any other node. Here we rewire the connec-
tions in such a way that the network remains connected
and does not dissociate into different components. Note
that ε = 0 means a regular network, ε = 1 corresponds
to a random graph. Figure 6 (c) shows the result. The
transition line is shifted towards the left, i.e., the critical
temperature decreases with increasing ε. This fact can
be understood as a consequence of having less triangles
in the networks that are obtained with a larger value of
ε; see SI 12.

Finally, we check what happens if we lower the cou-
pling strength of the Heider term in Eq. 1. When we
take g = 0.01, we observe a shift of the phase transi-
tion line to the left and the dependence of the transition
on the connectivity, k, becomes negligible; see Fig. 8
in the SI. Obviously, for the case g → 0 where the Hei-
der term vanishes, there will be no more dependence on
k. The pronounced fragmentation transition at high in-
terconnectedness is hence a direct consequence of social
balance.

3 In this case the relative update ratio of opinions to links has to
be modified appropriately.

D. The role of external influences

In Fig. 7 (a) we show the effect of the external in-
fluence, h, designed to suppress negative links in the so-
ciety, on the fragmented phase. It does what it is ex-
pected to do. Note that the terms h and g may compete
with each other: if h promotes the flip of a negative link
this could result in more unbalanced triangles, meaning
that it works against the effect of g. As a consequence
of this competition, a low value of h can only remove a
small fraction of negative links and a fragmented society
emerges, similar to the case without the external influ-
ence. Only beyond a critical threshold, hc, can most of
the negative links be eliminated and global consensus be
reached. See SI 11 for an illustration of this phenomenon
for a simple network of N = 3 nodes. Since there is no
transition in f (it remains close to 1), we use m to char-
acterise the change in the final state of the society under
the effect of the external influence.

E. A note on time scales

In Fig. 7 (b) we analyse the times, τ , that are necessary
for the order parameters to converge to their stationary
values. This is essential to check since convergence times
in this type of system can be exceedingly and unrealisti-
cally long. τ is the time required for the system to equili-
brate at low social temperature. We observe in Fig. 7 (b)
that on average τ is of the order of kN timesteps. Given
that the number of links is kN/2, the distribution of τ
with a mean 2.11× kN means that the network updates
about 4 times on average before reaching equilibrium.
However, for a particular run, τ may vary substantially,
depending also on the initial conditions. Typically, the
steady state can be reached faster if the initial fraction of
positive links is above 1/2. The variability becomes more
pronounced in the presence of external influence, h. At
sufficiently low temperature, the convergence times can
become very long due to the existence of many local min-
ima, so-called “jammed states”, in the energy landscape
[77, 78]. The social stress in a jammed state is not larger
than that in any of its neighbouring states, which can
be reached from this state by a single spin or link flip.
Evolving on such a “rugged landscape”, the system is
very likely to get trapped in local minima. The global
minimum of the social tension, H, hence may even be-
come unobservable during simulation time.

IV. SUMMARY AND DISCUSSION

We proposed a model that captures five key elements
of human societies: (i) Agency. Humans make their de-
cisions individually. (ii) Social context—social networks.
Individuals are constantly influenced by opinions and ac-
tions of others in their social neighbourhood, or by other
external influences. (iii) Stochasticity. Individuals are



9

0 5 10
T

0

0.5

1

f

N = 50
N = 100
N = 400

(a)

0 5 10 15 20
T

0

0.5

1

f

k = 30
k = 20

(b)

0 5 10
T

0

0.5

1

f

 = 0.0
 = 0.2
 = 0.4
 = 0.6
 = 1.0

(c)

FIG. 6: Robustness of the results. (a) Size dependence. Section of the phase diagram for k = 8 for various sizes of society
N = 50, 100, 400. No size dependence in the phase diagram is visible. (b) Higher average connectivity pushes the phase
transition towards higher critical temperatures. A discontinuous transition of f is observable that shows a hysteresis effect.
Note that it is especially pronounced for large connectivities. The existence of this hysteresis could indicate a potential handle
to avoid fragmentation, see discussion. N = 400, results are averaged over 100 independent realisations of the model. (c)
Change of the phase transition for a small-world network structure with ε = 0, 0.2, 0.4, 0.6, 1. k = 8, N = 400, g = 1. Results
averaged over 200 realisations for every ε.
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FIG. 7: (a) Opinion diversity (colour), |m|, as a function of
social temperature, T , and the external influence parameter,
h. The blue region indicates the case where opinion clusters
exist. In the yellow region global consensus is the unique
attractor of the dynamics. Note the change of meaning of
yellow and blue with respect to Fig. 4. The two phases of
high and low |m| are separated by a critical line hc = hc(T ).
Note that the formation of global alignment of opinions takes
very long (O(104) Monte Carlo iterations). N = 200, k = 10,
g = 1, ε = 0, results averaged over 3, 200 realisations. (b)
Distribution of convergence times, τ , at T = 1. Results were
obtained for regular networks ε = 0, g = 1, N = 200, k = 10
and are averaged over 800 realisations. τ is measured in the
unit of kN timesteps. Its mean is 〈τ〉 ' 2.11×kN , its variance
is σ2

τ ' 1.3× kN .

not fully rational and take random decisions from time
to time, that do not maximise certain objective- or util-
ity functions. (iv) Co-evolution. Individuals update their
opinions as well as their social links. Most of these up-
dates tend to avoid social tension. (v) Social balance.
Social networks show robust overall structures of positive
and negative social links. They follow robust patterns of
social balance.

We implemented a simple model that captures these
five building blocks in a stochastic manner in the frame-
work of a Hamiltonian approach. The focus of the model
rests on the notion that humans tend to update opinions

and social links, so as to reduce social tension. The model
exhibits a clear phase diagram, i.e. it shows at which
parameter values tipping points occur where a society
rapidly changes its microscopic composition and struc-
ture.

The results deliver a very clear and robust message:
A society with the ability of a co-evolutionary dynamics
of opinion- and link formation must be expected to have
a phase diagram as the one presented in Fig. 4. This
is a direct consequence of the social balance term in the
model, that incorporates the empirical fact that societies
are socially balanced to a high degree. The phase dia-
gram shows the existence of a critical connectivity, kc,
between individuals of a society at a fixed social temper-
ature, T , that controls the update frequencies of opin-
ions and links. Below that connectivity, kc, society is
in the cohesive phase, where opinions co-exist. Above
the critical connectivity, society fragments into clusters
of individuals who share positive links within the clus-
ters and have negative links between groups. Within the
clusters, large patches of uniform opinions form, and a
strong reinforcement of homophily is observed. The ex-
istence of a critical connectivity is an extremely robust
fact; if the connectivity increases above the critical value,
society inevitably must fragment.

The model also gives clear answers to how the frag-
mented phase can be avoided. There are only two ways
out: either to lower the connectivity below the critical
density, kc, by reducing the number of interaction part-
ners (social distancing) or, alternatively, to increase the
social temperature, T , meaning that people would update
their opinions (and links) randomly more often. There
are no other alternatives within the framework of this
model. For the case of increasing update rates, however,
the existence of the mentioned hysteresis phenomenon
must be taken into account. This means that if at a
fixed interaction density, k update rates, T , are increased,
the fragmentation might transition rapidly to the mixed
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opinion phase, at, say T ′. If then the update rates are
again reduced, fragmentation does not immediately re-
turn, but might reappear at lower update rates, T ′′ < T ′.

With the strength of the Heider term, g, and the irreg-
ular patterns of the underlying networks for ε > 0, the
position of the critical lines can be shifted. The phase
diagram remains robust to changes of the overall size of
the society. We have seen that under strong exogenous
influences, h, such as religion or nationalism, there is a
possibility of transitioning from a fragmented society to
a “utopian” or fascist one; such interventions will force
the society towards a global consensus.

The presented model has a number of shortcomings.
Several essential features of real societies have not been
included. We strongly simplified the structure of social
connectivity. Whereas social systems are multi-layer net-
works, here we have focussed only on a single layer. It
remains to be seen how the phase diagrams change under
the integration of more than one layer of (positive and
negative) social interactions.

We have also made simplifying assumptions about the
plasticity of social networks. In reality individuals can
not only switch the sign of social links, but also elimi-
nate and establish new links. We have made a few ex-
ploratory steps in this direction, however decided to keep
the topologies fixed for the sake of identifying the essen-
tial underlying mechanisms. By allowing for more plas-
ticity in network formation, we think that the essence of
the model will not be affected much.

The use of one single binary opinion is minimalistic
and unrealistic. It would be much more realistic to use
multiple opinions such as cultural features in the Axelrod
model [27]. The original dynamics, however, needs to be
modified to account for negative links. For example, two
agents connected by a positive link can become more sim-
ilar after interaction, while those who are hostile to each
other should grow further apart in the space of opinions.
It would be interesting to compare the effect of social
balance on the fragmentation in this case with the one
that occurs in the presented model. The key message
of our model should remain valid as the social balance
ensures the existence of clusters of positive links, within
each of which opinions are driven toward uniformity by
the reinforcement effect of homophily, regardless of the
opinion multiplicity.

The use of the same social temperature for both the
opinion and link update, is not justified a priori and has

been applied for the sake of simplicity. To describe situa-
tions, in which, either agents’ opinions are more frequent
to change than their relations, or vice versa, we intro-
duced the parameter, n. As shown in the SI, within a
range of n that ensures a true co-evolutionary dynam-
ics, the results do practically not depend on n. Alter-
natively, a stochastic dynamics with two temperatures,
one for opinions and one for links is certainly reason-
able. However, in this generalisation a more complicated
non-equilibrium approach is required. The structure of
the phase diagram may become richer with long-lived
metastable phases. Such a non-equilibrium approach
has been considered recently in [71], where the network
evolution is not driven by Heider’s balance, but by an-
other aspect of cognitive dissonance. There fragmenta-
tion emerges either as an absorbing steady state of the
dynamics or from an active phase due to fluctuations in
systems of finite size.

Finally, from a technical side, the model employed here
is a variation of a spin glass model used in physics. With
the present choice of model parameters (low connectivity,
networks of finite size, n = 1), we can not expect to
find the complicated phase space structure of a mean-
field spin glass [87]. However, the essence of frustration
imposed by the Heider term is clearly the same as in spin
glasses. A more detailed technical study of the model is
going to be published elsewhere.

V. FINAL CONCLUSION

The main conclusion of this paper is that it unambigu-
ously shows that the presence of social balance carries the
seed to social fragmentation. Fragmentation inevitably
occurs in a co-evolutionary society if the average interac-
tion density exceeds a critical threshold.
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VI. SUPPLEMENTARY MATERIAL

A. Dependence of fragmentation on social balance,
g

As shown in Fig. 4, fragmentation can occur at any
level of interconnectedness if the social temperature is
low enough. The fragmentation that inevitably happens
is caused by social balance. Societies with weak Hei-
der’s balance all become fragmented below a universal
“critical” temperature, regardless of their communica-
tion densities. The phase diagram in Fig. 8 demonstrates
this point. Here we used a very weak social balance of
g = 0.01. The fragmented phase (yellow) extends as the
relative effect of social balance, g, increases, as seen in
Fig. 9. Rescaling g to a non-zero value simply shifts the
critical line without changing the structure of the phase
diagram.
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FIG. 8: Social balance level, f , as a function of the aver-
age network degree, k, and the social temperature, T , for
g = 0.01. All other parameters are the same as in Fig. 4.
Although the fragmented and cohesive phases are separated
from each other by a critical line, this line becomes vertical,
i.e., it does no longer depend on the connectivity. The result
thus demonstrates the crucial effect of social balance on the
transition of societies between cohesion and fragmentation.

B. Relative update frequencies—choice of
parameter n

Figure 10 shows how the observables f (blue) and m
(red) evolve over time for different values of n. For val-
ues of n that ensure a correct implementation of the
co-evolutionary dynamics (n = 0.01, 1, 100), the system
evolves in more or less the same way, see panels (a)-(c).
Based on this observation we made our choice for n = 1
as used in the paper. Only when links evolve very slowly
compared to opinions (n = 10, 000) do we observe sig-
nificant deviations; the system can no longer equilibrate
during the simulation time. Note the change of scale in
panel (d).
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FIG. 9: (a) Balance level, f , and (b) group homogeneity, mg,
both as a function of T and g. Results averaged over 1000
realisations for N = 10. Random initial conditions in links
and opinions. The reason for using mg here is that m ' 0
in both regions and therefore can’t be used to distinguish the
two phases.
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FIG. 10: Evolution of f and m over time with different values
of n: (a) n = 0.01, (b) n = 1, (c) n = 100, and (d) n = 10, 000.
N = 400, k = 8, T = 1, g = 1, h = 0. Note that in (d), m has
been rescaled by a factor of 10 to keep it within the range of
the y axis. Time is measured in units of kN timesteps.

C. Illustration of external influences, h

To illustrate the effect of h and its competing role with
g in some cases, in Fig. 11 we show an evolutionary

path, which a system of three individuals would follow
if h ≥ hc. For this particular system hc = 2(1 + g)
at zero temperature. When h < hc, both the bipolar
(bottom-left) and global consensus (top-right) states are
attractors. If the system starts from any configuration
in the basin of attraction of the bipolar state, it ends up
in this state. This state is no longer the global minimum
of the social stress, H, if an external influence, h > hc,
is introduced. The system will then be driven towards
consensus, following, for example, the illustrated path.
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FIG. 11: Evolution from a bipolar (bottom-left) to the con-
sensus state (top-right) in the phase space of opinions (y-axis)
and links (x-axis) for h ≥ hc ≡ 2(1 + g) at zero temperature
T = 0. If h < hc then a system in the basin of attraction of
the bipolar state would never end up in the consensus phase
at T = 0, following this path. In this state, the effects of
g and h are opposing each other. g tends not to flip either
of the two negative links, J12, since the triangle is already
balanced, but h favours its removal to reduce the number of
negative links. Only a value of h larger than the threshold,
hc, can overcome the effect of g and bring the whole system
to consensus.

D. Number of triangles in small-world networks

Figure 12 shows the number of triangles in small-world
networks as a function of k and the rewiring parameter,
ε. It is obvious that less triangles exist in networks with
more random connections (larger ε). Therefore, the effect
of Heider’s balance on the dynamics via triadic relations
must become weaker as ε increases. This heuristically
explains why the critical line is shifted towards the left,
i.e., the fragmented phase shrinks with increasing ε.
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