11,261 research outputs found

    Mixing and non-mixing local minima of the entropy contrast for blind source separation

    Full text link
    In this paper, both non-mixing and mixing local minima of the entropy are analyzed from the viewpoint of blind source separation (BSS); they correspond respectively to acceptable and spurious solutions of the BSS problem. The contribution of this work is twofold. First, a Taylor development is used to show that the \textit{exact} output entropy cost function has a non-mixing minimum when this output is proportional to \textit{any} of the non-Gaussian sources, and not only when the output is proportional to the lowest entropic source. Second, in order to prove that mixing entropy minima exist when the source densities are strongly multimodal, an entropy approximator is proposed. The latter has the major advantage that an error bound can be provided. Even if this approximator (and the associated bound) is used here in the BSS context, it can be applied for estimating the entropy of any random variable with multimodal density.Comment: 11 pages, 6 figures, To appear in IEEE Transactions on Information Theor

    Branching integrals and Casselman phenomenon

    Full text link
    Let GG be a real semisimple Lie group, KK its maximal complex subgroup, and GCG_C its complexification. It is known that all the KK-finite matrix elements on GG admit holomorphic continuation to branching functions on GCG_C having singularities at the a prescribed divisor. We propose a geometric explanation of this phenomenon. The note also contsins a general survey of holomorphic continuations of infinite-dimensional representations.Comment: 13pp, an addendum is adde

    Optimal household energy management and participation in ancillary services with PV production

    Get PDF
    The work presented in this paper deals with a project aiming to increase the value of photovoltaic (PV) solar production for residential application. To contribute to the development of the new functionalities for such system and the efficient control system to optimize its operation, this paper defines the possibility for the proposed system to participate to the ancillary services, particularly in active power service provider. This service of PV-based system for housing application, as it does not exist today, has led to a market design proposition in the distribution system. The mathematical model for calculating the optimal operation of system (sources, load, and the exchange power with the grid) results in a linear mix integer optimization problem where the objective is to maximize the profit obtained by participating to electricity market. The approach is illustrated in an example study case. The PV producer could benefit from its intervention on balancing market or ancillary services market despite of the impact on the profit of several kinds of uncertainty, as the intermittence of PV source.energy management ; ancillary services ; PV production ; household application

    Eigenvalues of complex Hamiltonians with PT-symmetry. I

    Get PDF

    A new 130nm F.E readout chip for microstrip detectors

    Full text link
    In the context of the Silicon tracking for a Linear Collider (SiLC) R&D collaboration, a highly compact mixed-signal chip has been designed in 130nm CMOS technology intended to read Silicon strip detectors for the experiments at the future International Linear Collider. The chip includes eighty eight channels of a full analog signal processing chain and analog to digital conversion with the corresponding digital controls and readout channels. The chip is 5x10mm2 where the analog implementation represents 4/5 of the total Silicon area.Comment: 3 pages, 4 figures, LCWS08 worksho

    Low-Energy Properties of a One-dimensional System of Interacting bosons with Boundaries

    Full text link
    The ground state properties and low-lying excitations of a (quasi) one-dimensional system of longitudinally confined interacting bosons are studied. This is achieved by extending Haldane's harmonic-fluid description to open boundary conditions. The boson density, one-particle density matrix, and momentum distribution are obtained accounting for finite-size and boundary effects. Friedel oscillations are found in the density. Finite-size scaling of the momentum distribution at zero momentum is proposed as a method to obtain from the experiment the exponent that governs phase correlations. The strong correlations between bosons induced by reduced dimensionality and interactions are displayed by a Bijl-Jastrow wave function for the ground state, which is also derived.Comment: Final published version. Minor changes with respect to the previous versio

    Non-minimal Einstein-Yang-Mills-Higgs theory: Associated, color and color-acoustic metrics for the Wu-Yang monopole model

    Full text link
    We discuss a non-minimal Einstein-Yang-Mills-Higgs model with uniaxial anisotropy in the group space associated with the Higgs field. We apply this theory to the problem of propagation of color and color-acoustic waves in the gravitational background related to the non-minimal regular Wu-Yang monopole.Comment: 14 pages, no figure

    Electrical conductivity measured in atomic carbon chains

    Full text link
    The first electrical conductivity measurements of monoatomic carbon chains are reported in this study. The chains were obtained by unraveling carbon atoms from graphene ribbons while an electrical current flowed through the ribbon and, successively, through the chain. The formation of the chains was accompanied by a characteristic drop in the electrical conductivity. The conductivity of carbon chains was much lower than previously predicted for ideal chains. First-principles calculations using both density functional and many-body perturbation theory show that strain in the chains determines the conductivity in a decisive way. Indeed, carbon chains are always under varying non-zero strain that transforms its atomic structure from cumulene to polyyne configuration, thus inducing a tunable band gap. The modified electronic structure and the characteristics of the contact to the graphitic periphery explain the low conductivity of the locally constrained carbon chain.Comment: 21 pages, 9 figure

    Exact semiclassical expansions for one-dimensional quantum oscillators

    Get PDF
    A set of rules is given for dealing with WKB expansions in the one-dimensional analytic case, whereby such expansions are not considered as approximations but as exact encodings of wave functions, thus allowing for analytic continuation with respect to whichever parameters the potential function depends on, with an exact control of small exponential effects. These rules, which include also the case when there are double turning points, are illustrated on various examples, and applied to the study of bound state or resonance spectra. In the case of simple oscillators, it is thus shown that the Rayleigh–Schrödinger series is Borel resummable, yielding the exact energy levels. In the case of the symmetrical anharmonic oscillator, one gets a simple and rigorous justification of the Zinn-Justin quantization condition, and of its solution in terms of “multi-instanton expansion

    Resource-driven Substructural Defeasible Logic

    Full text link
    Linear Logic and Defeasible Logic have been adopted to formalise different features relevant to agents: consumption of resources, and reasoning with exceptions. We propose a framework to combine sub-structural features, corresponding to the consumption of resources, with defeasibility aspects, and we discuss the design choices for the framework
    • …
    corecore