47 research outputs found
Emitter-site selective photoelectron circular dichroism of trifluoromethyloxirane
The angle-resolved inner-shell photoionization of R-trifluoromethyloxirane,
C3H3F3O, is studied experimentally and theoretically. Thereby, we investigate
the photoelectron circular dichroism (PECD) for nearly-symmetric O 1s and F 1s
electronic orbitals, which are localized on different molecular sites. The
respective dichroic and angular distribution parameters
are measured at the photoelectron kinetic energies from 1 to 16 eV by using
variably polarized synchrotron radiation and velocity map imaging spectroscopy.
The present experimental results are in good agreement with the outcome of ab
initio electronic structure calculations. We report a sizable chiral asymmetry
of up to about 9% for the K-shell photoionization of oxygen atom.
For the individual fluorine atoms, the present calculations predict asymmetries
of similar size. However, being averaged over all fluorine atoms, it drops down
to about 2%, as also observed in the present experiment. Our study demonstrates
a strong emitter- and site-sensitivity of PECD in the one-photon inner-shell
ionization of this chiral molecule
Observation of Photoion Backward Emission in Photoionization of He and N2
We experimentally investigate the effects of the linear photon momentum on
the momentum distributions of photoions and photoelectrons generated in
one-photon ionization in an energy range of 300 eV 40 keV.
Our results show that for each ionization event the photon momentum is imparted
onto the photoion, which is essentially the system's center of mass.
Nevertheless, the mean value of the ion momentum distribution along the light
propagation direction is backward-directed by times the photon momentum.
These results experimentally confirm a 90 year old prediction.Comment: 5 pages, 3 figure
Two-photon resonant excitation of interatomic coulombic decay in neon dimers
The recent availability of intense and ultrashort extreme ultraviolet sources opens up the possibility of investigating ultrafast electronic relaxation processes in matter in an unprecedented regime. In this work we report on the observation of two-photon excitation of interatomic Coulombic decay (ICD) in neon dimers using the tunable intense pulses delivered by the free electron laser FERMI. The unique characteristics of FERMI (narrow bandwidth, spectral stability, and tunability) allow one to resonantly excite specific ionization pathways and to observe a clear signature of the ICD mechanism in the ratio of the ion yield created by Coulomb explosion. The present experimental results are explained by ab initio electronic structure and nuclear dynamics calculations
Strong differential photoion circular dichroism in strong-field ionization of chiral molecules
We investigate the differential ionization probability of chiral molecules in the strong-field regime as a function of the helicity of the incident light. To this end, we analyze the fourfold ionization of bromochlorofluoromethane (CHBrClF) with subsequent fragmentation into four charged fragments and different dissociation channels of the singly ionized methyloxirane. By resolving for the molecular orientation, we show that the photoion circular dichroism signal strength is increased by 2 orders of magnitude
Enantiosensitive Structure Determination by Photoelectron Scattering on Single Molecules
X-ray as well as electron diffraction are powerful tools for structure
determination of molecules. Electron diffraction methods yield
\r{A}ngstrom-resolution even when applied to large systems or systems involving
weak scatterers such as hydrogen atoms. For cases in which molecular crystals
cannot be obtained or the interaction-free molecular structure is to be
addressed, corresponding electron scattering approaches on gas-phase molecules
exist. Such studies on randomly oriented molecules, however, can only provide
information on interatomic distances, which is challenging to analyse in case
of overlapping distance parameters and they do not reveal the handedness of
chiral systems8. Here, we present a novel scheme to obtain information on the
structure, handedness and even detailed geometrical features of single
molecules in the gas phase. Using a loop-like analysis scheme employing input
from ab initio computations on the photoionization process, we are able to
deduce the three dimensional molecular structure with sensitivity to the
position individual atoms, as e.g. protons. To achieve this, we measure the
molecular frame diffraction pattern of core-shell photoelectrons in combination
with only two ionic fragments from a molecular Coulomb explosion. Our approach
is expected to be suitable for larger molecules, as well, since typical size
limitations regarding the structure determination by pure Coulomb explosion
imaging are overcome by measuring in addition the photoelectron in coincidence
with the ions. As the photoelectron interference pattern captures the molecular
structure at the instant of ionization, we anticipate our approach to allow for
tracking changes in the molecular structure on a femtosecond time scale by
applying a pump-probe scheme in the future
Trends in autoionization of Rydberg states converging to the 4s threshold in the Kr-Rbâș-SrÂČâș isoelectonic sequence: theory and experiment
We have measured the photoabsorption spectra of the Kr-like ions Rb+ and Sr2+ at photon energies corresponding to the excitation of 4s-np resonances using, the dual laser plasma photoabsorption technique. Dramatic changes in the line profiles, with increasing ionization and also proceeding along the Rydberg series of each ion, are observed and explained by the trends in 4s-transition amplitudes computed within a framework of configuration-interaction Pauli-Fock calculations. Total photoionization cross sections show very good agreement with relative absorption data extracted from the measured spectra