22 research outputs found

    Exploration of intraclonal adaptation mechanisms of Pseudomonas brassicacearum facing cadmium toxicity

    Get PDF
    Pseudomonas brassicacearum forms phenotypic variants in vitro as well as in planta during root colonization under natural conditions, leading to subpopulations (phase I and II cells) that differ in colony morphology and production of exoenzymes/secondary metabolites. The maximal concentration of cadmium allowing both variants growth was 25 μM; however, phase II cells accumulated fivefold higher Cd than phase I cells, even though both variants showed the same growth rate and kinetics, comprising a long stasis period (50 h). The whole transcriptome analysis of both variants in response to Cd was investigated using the home-made DNA microarrays. This analysis revealed completely different adaptation mechanisms developed by each variant to withstand and grow in the presence of the toxic. A re-organization of the cell wall to limit Cd entrance was noticed for phase I cells, as genes encoding levan exopolymers were downregulated at the expense of an upregulation of genes encoding alginate, and an upregulation of transporters such as cadA, and a downregulation of copper transporters. Phase II cells were unable to prevent Cd entrance and recruited genes under the control of oxyR and soxR regulation to face osmotic and oxidant stresses generated by Cd. Putrescine and spermidine metabolism appeared to play a central role in Cd tolerance. Microarray data were validated by biological analyses such as motility, oxidative stress assay, metabolite profiling with ICR-FT/MS and UPLC, capillary electrophoresis analysis of biogenic amines

    Perceiving the Chemical Language of Gram-negative Bacteria: Listening by High-Resolution Mass Spectrometry (Review)

    Get PDF
    Gram-negative bacteria use N-acylhomoserine lactones (AHLs) as their command language to coordinate population behavior during invasion and colonization of higher organisms. Although many different bacterial bioreporters are available for AHLs monitoring, in which a phenotypic response, e.g. bioluminescence, violacin production, and βgalactosidase activity, is exploited, mass spectrometry (MS) is the most versatile detector for rapid analysis of AHLs in complex microbial samples, with or without prior separation steps. In this paper we critically review recent advances in the application of high-resolution MS to analysis of the quorum sensing (QS) signaling molecules used by Gram-negative bacteria, with much emphasis on AHLs. A critical review of the use of bioreporters in the study of AHLs is followed by a short methodological survey of the capabilities of highresolution mass spectrometry (HRMS), including Fouriertransform ion cyclotron resonance (FTICR) MS and quadrupole time-of-flight (qTOF) MS. Use of infusion electrospray ultrahigh-resolution FTICR MS (12 Tesla) enables accurate mass measurements for determination of the elemental formulasofAHLsinAcidovorax sp. N35 and Burkholderia ubonensis AB030584. Results obtained by coupling liquid chromatography with a hybrid quadrupole linear ion trapFTICR mass spectrometer (LC–LTQ-FTICRMS, 7-T) for characterization of acylated homoserine lactones in the human pathogen Pseudomonas aeruginosa are presented. UPLC– ESI-qTOF MS has also proved to be suitable for identification of 3O-C HSL in Pseudomonas putida IsoF cell culture supernatant. Aspects of sample preparation and the avoidance of analytical pitfalls are also emphasized

    Novel degradation products of oxasulfuron identified by capillary electrophoresis – mass spectrometry

    No full text
    Two new intermediates rising from the photolytic reaction of the sulfonylurea herbicide oxasulfuron have been identified in aqueous environment. The higher concentrations of the two derivatives oxetan-3-yl 2-(formilsulfamoyl) benzoate and N-(4,6-dimethylpyrimidin-2-yl) formamide were reached within 8 h of UVirradiation. Here we demonstrate that an optimal separation and analysis of such compounds can be achieved by using a novel analytical method based on “non-aqueous” capillary electrophoresis (CE) system joined to an electrospray ionisation-mass spectrometry equipment. Using such a separation method and a particular electrophoretic solution a high reproducibility of migration times and peak areas can be obtained

    Natural organic matter and the event horizon of mass spectrometry

    No full text
    Soils, sediments, freshwaters, and marine waters contain natural organic matter (NOM), an exceedingly complex mixture of organic compounds that collectively exhibit a nearly continuous range of properties (size-reactivity continuum). NOM is composed mainly of carbon, hydrogen, and oxygen, with minor contributions from heteroatoms such as nitrogen, sulfur, and phosphorus. Suwannee River fulvic acid (SuwFA) is a fraction of NOM that is relatively depleted in heteroatoms. Ultrahigh resolution Fourier transform ion cyclotron (FTICR) mass spectra of SuwFA reveal several thousand molecular formulas, corresponding in turn to several hundred thousand distinct chemical environments of carbon even without accountancy of isomers. The mass difference Am among adjoining C,H,O-molecules between and within clusters of nominal mass is inversely related to molecular dissimilarity: any decrease of Am imposes an ever growing mandatory difference in molecular composition. Molecular formulas that are expected for likely biochemical precursor molecules are notably absent from these spectra, indicating that SuwFA is the product of diagenetic reactions that have altered the major components of biomass beyond the point of recognition. The degree of complexity of SuwFA can be brought into sharp focus through comparison with the theoretical limits of chemical complexity, as constrained and quantized by the fundamentals of chemical binding. The theoretical C,H,O-compositional space denotes the isomer-filtered complement of the entire, very vast space of molecular structures composed solely of carbon, hydrogen, and oxygen. The molecular formulas within SuwFA occupy a sizable proportion of the theoretical C,H,O-compositional space. A 100 percent coverage of the theoretically feasible C,H,O-compositional space by SuwFA molecules is attained throughout a sizable range of mass and H/C and O/C elemental ratios. The substantial differences between (and complementarity of) the SuwFA molecular formulas that are observed using six different modes of ionization (APCI, APPI, and ESI in positive and negative modus) imply considerable selectivity of the ionization process and suggest that the observed mass spectra represent simplified projections of still more complex mixtures

    Abiotic synthesis of complex organics in the Universe

    No full text
    corecore