33 research outputs found
Multifocal Joint Osteonecrosis in Sickle Cell Disease
The purpose of this study was to evaluate the frequency of multifocal osteonecrosis in patients with sickle cell disease. Between 1980 and 1989, 200 patients with sickle cell disease were treated in our institution for osteonecrosis. The patient population consisted of 102 males and 88 females with a mean age of twenty-six years at the time of presentation (range, eighteen to thirty-five years) and was followed until the year 2005. This cohort of patients was follow-up during average 15 years (until the year 2005). Multifocal osteonecrosis was defined as a disease of 3 or more anatomic sites. At the time of presentation, 49 patients were identified as having multifocal osteonecrosis. At the most recent follow-up, 87 patients had multifocal osteonecrosis. So at the last follow up among these eighty-seven patients, the occurrence of osteonecrosis was 158 lesions of the proximal femur associated with 151 proximal humerus osteonecroses, thirty-three lateral femoral condyle osteonecroses, twenty-eight distal femoral metaphysis osteonecroses, twenty-seven medial femoral condyle osteonecroses, twenty-three tibial plateau osteonecroses, twenty-one upper tibial metaphysis osteonecroses and forteen ankle osteonecroses. The total number of osteonecrosis was 455 in these 87 patients. The epiphyseal lesions were more frequent than the metadiaphyseal lesions excepted in the proximal tibia (Table 3). In conclusion, in patients with sickle cell disease, the risk of multifocal osteonecrosis is very high. In patients with hip osteonecrosis, the other joints should be evaluated with radiograph and MRI if the joint is symptomatic. In patients with osteonecrosis of the knee, shoulder or ankle, the patients’ hip should be evaluated by radiographs or MRI, regardless of whether the hip is symptomatic
Mathematical and computational models for bone tissue engineering in bioreactor systems
Research into cellular engineered bone grafts offers a promising solution to problems associated with the currently used auto- and allografts. Bioreactor systems can facilitate the development of functional cellular bone grafts by augmenting mass transport through media convection and shear flow-induced mechanical stimulation. Developing successful and reproducible protocols for growing bone tissue in vitro is dependent on tuning the bioreactor operating conditions to the specific cell type and graft design. This process, largely reliant on a trial-and-error approach, is challenging, time-consuming and expensive. Modelling can streamline the process by providing further insight into the effect of the bioreactor environment on the cell culture, and by identifying a beneficial range of operational settings to stimulate tissue production. Models can explore the impact of changing flow speeds, scaffold properties, and nutrient and growth factor concentrations. Aiming to act as an introductory reference for bone tissue engineers looking to direct their experimental work, this article presents a comprehensive framework of mathematical models on various aspects of bioreactor bone cultures and overviews modelling case studies from literature
Treatment of Infected Hip Arthroplasty
The clinical outcomes of a consecutive series of deep total joint infections treated with a prosthesis retaining protocol were reviewed. The treatment of deep periprosthetic joint infections is challenging. In recent years, two-stage exchange arthroplasty has emerged as the gold standard for successful elimination of infection. With success rates averaging 82% to 96%, this treatment method has both the highest and most consistent rate of infection eradication. Another alternative in the treatment of the deep periprosthetic infection is the single-stage exchange arthroplasty. Successful eradication of infection after single-stage exchange arthroplasty has been reported to average from 60% to 83% after total hip infections. While both the single and two-stage exchange arthroplasty are viable treatment options, they are associated with negative factors such as they are time consuming, expensive, and may entail a 6- to 12-week period with a minimally functioning extremity after prosthesis removal. This paper reports the general principles of management, the treatment of acute infection occurring in the postoperative period or later, and the treatment of chronic infection by exchange arthroplasty or resection arthroplasty
Bone regeneration: current concepts and future directions
Bone regeneration is a complex, well-orchestrated physiological process of bone formation, which can be seen during normal fracture healing, and is involved in continuous remodelling throughout adult life. However, there are complex clinical conditions in which bone regeneration is required in large quantity, such as for skeletal reconstruction of large bone defects created by trauma, infection, tumour resection and skeletal abnormalities, or cases in which the regenerative process is compromised, including avascular necrosis, atrophic non-unions and osteoporosis. Currently, there is a plethora of different strategies to augment the impaired or 'insufficient' bone-regeneration process, including the 'gold standard' autologous bone graft, free fibula vascularised graft, allograft implantation, and use of growth factors, osteoconductive scaffolds, osteoprogenitor cells and distraction osteogenesis. Improved 'local' strategies in terms of tissue engineering and gene therapy, or even 'systemic' enhancement of bone repair, are under intense investigation, in an effort to overcome the limitations of the current methods, to produce bone-graft substitutes with biomechanical properties that are as identical to normal bone as possible, to accelerate the overall regeneration process, or even to address systemic conditions, such as skeletal disorders and osteoporosis