58 research outputs found

    First records of the myrmecophilous fungus Laboulbenia camponoti Batra (Ascomycetes: Laboulbeniales) from the Carpathian Basin

    Get PDF
    Laboulbenia camponoti Batra, 1963 (Ascomycetes: Laboulbeniales), has been found on Camponotus aethiops (Latreille, 1798) (Hymenoptera: Formicidae) workers in the Carpathian Basin: in Baziaş, Caraş-Severin (Romania), and Vienna (Austria). Vienna is the northernmost known locality of this fungus (48°12' N). These new observations expand the area of L. camponoti from regions with Mediterranean and subtropical climatic influences to the common borders of the Continental and Pannonian regions. These results show that Camponotus samples from other climatic regions should be examined more closely for this fungal parasite

    First records of the myrmecophilous fungus Laboulbenia camponoti Batra (Ascomycetes: Laboulbeniales) from the Carpathian Basin

    Get PDF
    Laboulbenia camponoti Batra, 1963 (Ascomycetes: Laboulbeniales), has been found on Camponotus aethiops (Latreille, 1798) (Hymenoptera: Formicidae) workers in the Carpathian Basin: in Baziaş, Caraş-Severin (Romania), and Vienna (Austria). Vienna is the northernmost known locality of this fungus (48°12' N). These new observations expand the area of L. camponoti from regions with Mediterranean and subtropical climatic influences to the common borders of the Continental and Pannonian regions. These results show that Camponotus samples from other climatic regions should be examined more closely for this fungal parasite

    First Records Of The Recently Described Ectoparasitic Rickia lenoirii Santam. (Ascomycota: Laboulbeniales) In The Carpathian-Basin

    Get PDF
    Rickia lenoirii has been reported in seven localities in the Carpathian Basin, six in Hungary and one in Romania, on Messor structor (Hymenoptera: Formicidae) host specimens. This is the first occurrence of this fungus in two new (Pannonian and Continental) biogeographic regions. According to our findings, the northernmost (47°31'33.01"N) known occurrence of R. lenoirii is Ferenc-hegy (Ferenc Hill) in Budapest. These results demonstrate that ant-parasitic Laboulbeniales fungi may have wider distribution areas than previously expected by mycologists and myrmecologists

    First Records Of The Recently Described Ectoparasitic Rickia lenoirii Santam. (Ascomycota: Laboulbeniales) In The Carpathian-Basin

    Get PDF
    Rickia lenoirii has been reported in seven localities in the Carpathian Basin, six in Hungary and one in Romania, on Messor structor (Hymenoptera: Formicidae) host specimens. This is the first occurrence of this fungus in two new (Pannonian and Continental) biogeographic regions. According to our findings, the northernmost (47°31'33.01"N) known occurrence of R. lenoirii is Ferenc-hegy (Ferenc Hill) in Budapest. These results demonstrate that ant-parasitic Laboulbeniales fungi may have wider distribution areas than previously expected by mycologists and myrmecologists

    Bringing the Laboulbeniales to the 21st century: Enhanced techniques for extraction and PCR amplification of DNA from minute ectoparasitic fungi

    Get PDF
    One of the most peculiar groups of Ascomycota are the Laboulbeniales. These fungi are characterized by an ectoparasitic life style on arthropods, determinate growth, lack of an asexual stage, high species richness, and intractability to culture. The Laboulbeniales, sister to the Pyxidiophorales, have only recently been assigned their own class, the Laboulbeniomycetes, based on very few ribosomal DNA sequences. So far, DNA isolations and PCR amplifications have proven difficult. Here, we provide details of isolation techniques and the application of commercially available kits that enable efficient and reliable genetic analyses of these peculiar fungi. We provide 43 newly generated Laboulbeniales rDNA sequences, among which are the first published sequences for species in the genera Gloeandromyces, Herpomyces, Laboulbenia, Monoicomyces, and Polyandromyces. DNA extractions were possible using from 1 to 30 thalli from hosts preserved in ethanol (80-100%). In two cases, we successfully isolated DNA from thalli on dried insect collections. Laboulbeniales molecular systematics could be substantially enhanced through these improved methods by allowing more complete sampling of both taxa and gene regions

    Heme Oxygenase-1 (HMX1) Loss of Function Increases the In-Host Fitness of the Saccharomyces ‘boulardii’ Probiotic Yeast in a Mouse Fungemia Model

    Get PDF
    The use of yeast-containing probiotics is on the rise; however, these products occasionally cause fungal infections and possibly even fungemia among susceptible probiotic-treated patients. The incidence of such cases is probably underestimated, which is why it is important to delve deeper into the pathomechanism and the adaptive features of S. ‘boulardii’. Here in this study, the potential role of the gene heme oxygenase-1 (HMX1) in probiotic yeast bloodstream-derived infections was studied by generating marker-free HMX1 deletion mutants with CRISPR/Cas9 technology from both commercial and clinical S. ‘boulardii’ isolates. The six commercial and clinical yeasts used here represented closely related but different genetic backgrounds as revealed by comparative genomic analysis. We compared the wild-type isolates against deletion mutants for their tolerance of iron starvation, hemolytic activity, as well as kidney burden in immunosuppressed BALB/c mice after lateral tail vein injection. Our results reveal that the lack of HMX1 in S. ‘boulardii’ significantly (p < 0.0001) increases the kidney burden of the mice in most genetic backgrounds, while at the same time causes decreased growth in iron-deprived media in vitro. These findings indicate that even a single-gene loss-of-function mutation can, surprisingly, cause elevated fitness in the host during an opportunistic systemic infection. Our findings indicate that the safety assessment of S. ‘boulardii’ strains should not only take strain-to-strain variation into account, but also avoid extrapolating in vitro results to in vivo virulence factor determination

    Generacija novih genotipskih i fenotipskih svojstava prirodnih i umjetnih hibrida kvasaca

    Get PDF
    Evolution and genome stabilization have mostly been studied on the Saccharomyces hybrids isolated from natural and alcoholic fermentation environments. Genetic and phenotypic properties have usually been compared to the laboratory and reference strains, as the true ancestors of the natural hybrid yeasts are unknown. In this way the exact impact of different parental fractions on the genome organization or metabolic activity of the hybrid yeasts is difficult to resolve completely. In the present work the evolution of geno- and phenotypic properties is studied in the interspecies hybrids created by the cross-breeding of S. cerevisiae with S. uvarum or S. kudriavzevii auxotrophic mutants. We hypothesized that the extent of genomic alterations in S. cerevisiae × S. uvarum and S. cerevisiae × S. kudriavzevii should affect the physiology of their F1 offspring in different ways. Our results, obtained by amplified fragment length polymorphism (AFLP) genotyping and karyotyping analyses, showed that both subgenomes of the S. cerevisiae x S. uvarum and of S. cerevisiae × S. kudriavzevii hybrids experienced various modifications. However, the S. cerevisiae × S. kudriavzevii F1 hybrids underwent more severe genomic alterations than the S. cerevisiae × S. uvarum ones. Generation of the new genotypes also influenced the physiological performances of the hybrids and the occurrence of novel phenotypes. Significant differences in carbohydrate utilization and distinct growth dynamics at increasing concentrations of sodium chloride, urea and miconazole were observed within and between the S. cerevisiae × S. uvarum and S. cerevisiae × S. kudriavzevii hybrids. Parental strains also demonstrated different contributions to the final metabolic outcomes of the hybrid yeasts. A comparison of the genotypic properties of the artificial hybrids with several hybrid isolates from the wine-related environments and wastewater demonstrated a greater genetic variability of the S. cerevisiae × S. kudriavzevii hybrids. Saccharomyces cerevisiae × S. uvarum artificial and natural hybrids showed considerable differences in osmolyte tolerance and sensitivity to miconazole, whereas the S. cerevisiae × S. kudriavzevii hybrids exhibited differences also in maltotriose utilization. The results of this study suggest that chromosomal rearrangements and genomic reorganizations as post-hybridization processes may affect the phenotypic properties of the hybrid progeny substantially. Relative to their ancestors, the F1 segregants may generate different phenotypes, indicating novel routes of evolution in response to environmental growth conditions.Evolucija i stabilizacija genoma kvasca uglavnom se proučavaju s pomoću interspecijskih hibrida roda Saccharomyces, izoliranih iz prirodnih staništa ili tijekom alkoholnih fermentacija. Njihova genetska i fenotipska svojstva obično se uspoređuju sa svojstvima laboratorijskih i referentnih sojeva, budući da su izvorni roditeljski sojevi prirodnih hibrida kvasaca nepoznati. Na ovaj je način teško u potpunosti razumjeti utjecaj različitih roditeljskih frakcija na organizaciju genoma ili metaboličku aktivnost hibrida kvasaca. U ovom je radu proučena evolucija genotipskih i fenotipskih svojstava interspecijskih hibrida, nastalih križanjem kvasca S. cerevisiae s auksotrofnim mutantima kvasaca S. uvarum i S. kudriavzevii. Naša je hipoteza bila da bi genomske promjene nastale u hibridima S. cerevisiae × S. uvarum i S. cerevisiae × S. kudriavzevii trebale na različite načine utjecati na fiziologiju njihovih F1 segreganata. Rezultati dobiveni genotipizacijom, tj. analizom polimorfizma duljine umnoženih fragmenata (engl. amplified fragment length polymorphism - AFLP) i kariotipizacijom pokazuju da su oba subgenoma hibrida S. cerevisiae × S. uvarum i S. cerevisiae × S. kudriavzevii izmjenjena. Međutim, promjene genoma segreganata F1 hibrida S. cerevisiae × S. kudriavzevii bile su znatnije od onih segreganata hibrida S. cerevisiae × S. uvarum. Novi su genotipovi utjecali na fiziološke značajke hibrida te nastanak novih fenotipova. Bitna je razlika među hibridima S. cerevisiae × S. uvarum i S. cerevisiae × S. kudriavzevii opažena u potrošnji šećera i različitoj dinamici rasta kod povećanih koncentracija natrijevog klorida, uree i mikonazola. Roditeljski su sojevi različito utjecali na konačnu metaboličku sliku hibrida kvasaca. Usporedbom genotipskih svojstava umjetnih hibrida s nekoliko hibrida izoliranih iz prirodnih staništa (vinograda i otpadnih voda) utvrđena je veća genetska raznolikost hibrida S. cerevisiae × S. kudriavzevii. Umjetni i prirodni hibridi Saccharomyces cerevisiae × S. uvarum bili su različito osjetljivi prema osmolitima i mikonazolu, dok su se hibridi S. cerevisiae × S. kudriavzevii razlikovali i u potrošnji maltotrioze. Iz dobivenih se rezultata može zaključiti da kromosomalna rekombinacija i genomska reorganizacija kao post-hibridizacijski procesi mogu značajno utjecati na fenotipska svojstva hibridnih potomaka. U usporedbi s roditeljskim sojevima, segreganti F1 mogu generirati različite fenotipove, što upućuje na zaključak da su specifični uvjeti rasta kvasaca uzrokovali nastanak novih evolucijskih tokova

    Studies of Laboulbeniales on Myrmica ants (IV): host-related diversity and thallus distribution patterns of Rickia wasmannii

    Get PDF
    Fungal species identities are often based on morphological features, but current molecular phylogenetic and other approaches almost always lead to the discovery of multiple species in single morpho-species. According to the morphological species concept, the ant-parasitic fungus Rickia wasmannii (Ascomycota, Laboulbeniales) is a single species with pan-European distribution and a wide host range. Since its description, it has been reported from ten species of Myrmica (Hymenoptera, Formicidae), of which two belong to the rubra-group and the other eight to the phylogenetically distinct scabrinodis-group. We found evidence for R. wasmannii being a single phylogenetic species using sequence data from two loci. Apparently, the original morphological description (dating back to 1899) represents a single phylogenetic species. Furthermore, the biology and host-parasite interactions of R. wasmannii are not likely to be affected by genetic divergence among different populations of the fungus, implying comparability among studies conducted on members of different ant populations. We found no differences in total thallus number on workers between Myrmica species, but we did observe differences in the pattern of thallus distribution over the body. The locus of infection is the frontal side of the head in Myrmica rubra and M. sabuleti whereas in M. scabrinodis the locus of infection differs between worker ants from Hungary (gaster tergites) and the Netherlands (frontal head). Possible explanations for these observations are differences among host species and among populations of the same species in (i) how ant workers come into contact with the fungus, (ii) grooming efficacy, and (iii) cuticle surface characteristics

    Fungal Systematics and Evolution: FUSE 6

    Get PDF
    Fungal Systematics and Evolution (FUSE) is one of the journal series to address the “fusion” between morphological data and molecular phylogenetic data and to describe new fungal taxa and interesting observations. This paper is the 6th contribution in the FUSE series—presenting one new genus, twelve new species, twelve new country records, and three new combinations. The new genus is: Pseudozeugandromyces (Laboulbeniomycetes, Laboulbeniales). The new species are: Albatrellopsis flettioides from Pakistan, Aureoboletus garciae from Mexico, Entomophila canadense from Canada, E. frigidum from Sweden, E. porphyroleucum from Vietnam, Erythrophylloporus flammans from Vietnam, Marasmiellus boreoorientalis from Kamchatka Peninsula in the Russian Far East, Marasmiellus longistipes from Pakistan, Pseudozeugandromyces tachypori on Tachyporus pusillus (Coleoptera, Staphylinidae) from Belgium, Robillarda sohagensis from Egypt, Trechispora hondurensis from Honduras, and Tricholoma kenanii from Turkey. The new records are: Arthrorhynchus eucampsipodae on Eucampsipoda africanum (Diptera, Nycteribiidae) from Rwanda and South Africa, and on Nycteribia vexata (Diptera, Nycteribiidae) from Bulgaria; A. nycteribiae on Eucampsipoda africanum from South Africa, on Penicillidia conspicua (Diptera, Nycteribiidae) from Bulgaria (the first undoubtful country record), and on Penicillidia pachymela from Tanzania; Calvatia lilacina from Pakistan; Entoloma shangdongense from Pakistan; Erysiphe quercicola on Ziziphus jujuba (Rosales, Rhamnaceae) and E. urticae on Urtica dioica (Rosales, Urticaceae) from Pakistan; Fanniomyces ceratophorus on Fannia canicularis (Diptera, Faniidae) from the Netherlands; Marasmiellus biformis and M. subnuda from Pakistan; Morchella anatolica from Turkey; Ophiocordyceps ditmarii on Vespula vulgaris (Hymenoptera, Vespidae) from Austria; and Parvacoccum pini on Pinus cembra (Pinales, Pinaceae) from Austria. The new combinations are: Appendiculina gregaria, A. scaptomyzae, and Marasmiellus rodhallii. Analysis of an LSU dataset of Arthrorhynchus including isolates of A. eucampsipodae from Eucampsipoda africanum and Nycteribia spp. hosts, revealed that this taxon is a complex of multiple species segregated by host genus. Analysis of an SSU–LSU dataset of Laboulbeniomycetes sequences revealed support for the recognition of four monophyletic genera within Stigmatomyces sensu lato: Appendiculina, Fanniomyces, Gloeandromyces, and Stigmatomyces sensu stricto. Finally, phylogenetic analyses of Rhytismataceae based on ITS–LSU ribosomal DNA resulted in a close relationship of Parvacoccum pini with Coccomyces strobi
    corecore