1,133 research outputs found
Skyrmion Lattice in a Chiral Magnet
Skyrmions represent topologically stable field configurations with
particle-like properties. We used neutron scattering to observe the spontaneous
formation of a two-dimensional lattice of skyrmion lines, a type of magnetic
vortices, in the chiral itinerant-electron magnet MnSi. The skyrmion lattice
stabilizes at the border between paramagnetism and long-range helimagnetic
order perpendicular to a small applied magnetic field regardless of the
direction of the magnetic field relative to the atomic lattice. Our study
experimentally establishes magnetic materials lacking inversion symmetry as an
arena for new forms of crystalline order composed of topologically stable spin
states
Quantum Phase Transitions in the Itinerant Ferromagnet ZrZn
We report a study of the ferromagnetism of ZrZn, the most promising
material to exhibit ferromagnetic quantum criticality, at low temperatures
as function of pressure . We find that the ordered ferromagnetic moment
disappears discontinuously at =16.5 kbar. Thus a tricritical point
separates a line of first order ferromagnetic transitions from second order
(continuous) transitions at higher temperature. We also identify two lines of
transitions of the magnetisation isotherms up to 12 T in the plane where
the derivative of the magnetization changes rapidly. These quantum phase
transitions (QPT) establish a high sensitivity to local minima in the free
energy in ZrZn, thus strongly suggesting that QPT in itinerant
ferromagnets are always first order
Crystalline phases in chiral ferromagnets: Destabilization of helical order
In chiral ferromagnets, weak spin-orbit interactions twist the ferromagnetic
order into spirals, leading to helical order. We investigate an extended
Ginzburg-Landau theory of such systems where the helical order is destabilized
in favor of crystalline phases. These crystalline phases are based on periodic
arrangements of double-twist cylinders and are strongly reminiscent of blue
phases in liquid crystals. We discuss the relevance of such blue phases for the
phase diagram of the chiral ferromagnet MnSi.Comment: 6 pages, 5 figures (published version
Magnon Exchange Mechanism of Ferromagnetic Superconductivity
The magnon exchange mechanism of ferromagnetic superconductivity
(FM-superconductivity) was developed to explain in a natural way the fact that
the superconductivity in , and is confined to the
ferromagnetic phase.The order parameter is a spin anti-parallel component of a
spin-1 triplet with zero spin projection. The transverse spin fluctuations are
pair forming and the longitudinal ones are pair breaking. In the present paper,
a superconducting solution, based on the magnon exchange mechanism, is obtained
which closely matches the experiments with and . The onset of
superconductivity leads to the appearance of complicated Fermi surfaces in the
spin up and spin down momentum distribution functions. Each of them consist of
two pieces, but they are simple-connected and can be made very small by varying
the microscopic parameters. As a result, it is obtained that the specific heat
depends on the temperature linearly, at low temperature, and the coefficient
is smaller in the superconducting phase than in the
ferromagnetic one. The absence of a quantum transition from ferromagnetism to
ferromagnetic superconductivity in a weak ferromagnets and is
explained accounting for the contribution of magnon self-interaction to the
spin fluctuations' parameters. It is shown that in the presence of an external
magnetic field the system undergoes a first order quantum phase transition.Comment: 9 pages, 7 figures, accepted for publication in Phys.Rev.
Versatile module for experiments with focussing neutron guides
We report the development of a versatile module that permits fast and
reliable use of focussing neutron guides under varying scattering angles. A
simple procedure for setting up the module and neutron guides is illustrated by
typical intensity patterns to highlight operational aspects as well as typical
parasitic artefacts. Combining a high-precision alignment table with separate
housings for the neutron guides on kinematic mounts, the change-over between
neutron guides with different focussing characteristics requires no
readjustments of the experimental set-up. Exploiting substantial gain factors,
we demonstrate the performance of this versatile neutron scattering module in a
study of the effects of uniaxial stress on the domain populations in the
transverse spin density wave phase of single crystal Cr
Configurable multiplier modules for an adaptive computing system
The importance of reconfigurable hardware is increasing steadily. For example, the primary approach of using adaptive systems based on programmable gate arrays and configurable routing resources has gone mainstream and high-performance programmable logic devices are rivaling traditional application-specific hardwired integrated circuits. Also, the idea of moving from the 2-D domain into a 3-D design which stacks several active layers above each other is gaining momentum in research and industry, to cope with the demand for smaller devices with a higher scale of integration. However, optimized arithmetic blocks in course-grain reconfigurable arrays as well as field-programmable architectures still play an important role. In countless digital systems and signal processing applications, the multiplication is one of the critical challenges, where in many cases a trade-off between area usage and data throughput has to be made. But the a priori choice of word-length and number representation can also be replaced by a dynamic choice at run-time, in order to improve flexibility, area efficiency and the level of parallelism in computation. In this contribution, we look at an adaptive computing system called 3-D-SoftChip to point out what parameters are crucial to implement flexible multiplier blocks into optimized elements for accelerated processing. The 3-D-SoftChip architecture uses a novel approach to 3-dimensional integration based on flip-chip bonding with indium bumps. The modular construction, the introduction of interfaces to realize the exchange of intermediate data, and the reconfigurable sign handling approach will be explained, as well as a beneficial way to handle and distribute the numerous required control signals
Quantum Tricritical Points in NbFe
Quantum critical points (QCPs) emerge when a 2nd order phase transition is
suppressed to zero temperature. In metals the quantum fluctuations at such a
QCP can give rise to new phases including unconventional superconductivity.
Whereas antiferromagnetic QCPs have been studied in considerable detail
ferromagnetic (FM) QCPs are much harder to access. In almost all metals FM QCPs
are avoided through either a change to 1st order transitions or through an
intervening spin-density-wave (SDW) phase. Here, we study the prototype of the
second case, NbFe. We demonstrate that the phase diagram can be modelled
using a two-order-parameter theory in which the putative FM QCP is buried
within a SDW phase. We establish the presence of quantum tricritical points
(QTCPs) at which both the uniform and finite susceptibility diverge. The
universal nature of our model suggests that such QTCPs arise naturally from the
interplay between SDW and FM order and exist generally near a buried FM QCP of
this type. Our results promote NbFe as the first example of a QTCP, which
has been proposed as a key concept in a range of narrow-band metals, including
the prominent heavy-fermion compound YbRhSi.Comment: 21 pages including S
Superconductivity induced by spark erosion in ZrZn2
We show that the superconductivity observed recently in the weak itinerant
ferromagnet ZrZn2 [C. Pfleiderer et al., Nature (London) 412, 58 (2001)] is due
to remnants of a superconducting layer induced by spark erosion. Results of
resistivity, susceptibility, specific heat and surface analysis measurements on
high-quality ZrZn2 crystals show that cutting by spark erosion leaves a
superconducting surface layer. The resistive superconducting transition is
destroyed by chemically etching a layer of 5 microns from the sample. No
signature of superconductivity is observed in rho(T) of etched samples at the
lowest current density measured, J=675 Am-2, and at T < 45 mK. EDX analysis
shows that spark-eroded surfaces are strongly Zn depleted. The simplest
explanation of our results is that the superconductivity results from an alloy
with higher Zr content than ZrZn2.Comment: Final published versio
Reentrant Phase Diagram of in Magnetic Field
We present a magnetic phase diagram of rare-earth pyrochlore
in a magnetic field. Using heat
capacity, magnetization, and neutron scattering data, we show an unusual
field-dependence of a first-order phase boundary, wherein a small applied field
increases the ordering temperature. The zero-field ground state has
ferromagnetic domains, while the spins polarize along
above 0.65T. A classical Monte Carlo analysis of published Hamiltonians does
account for the critical field in the low T limit. However, this analysis fails
to account for the large bulge in the reentrant phase diagram, suggesting that
either long-range interactions or quantum fluctuations govern low field
properties.Comment: 5 pages, 5 pages supplementary informatio
- …
