3 research outputs found

    Trait Variation Along Elevation Gradients in a Dominant Wood Shrub is Population-Specific and Driven by Plasticity

    Get PDF
    Elevation gradients are frequently used as space-for-time substitutions to infer species’ trait responses to climate change. However, studies rarely investigate whether trait responses to elevation are widespread or population specific within a species, and the relative genetic and plastic contributions to such trait responses may not be well understood. Here, we examine plant trait variation in the dominant woody shrub, Rhododendron maximum, along elevation gradients in three populations in the South Central Appalachian Mountains, USA, in both field and common garden environments. We ask the following: (1) do plant traits vary along elevation? (2) do trait responses to elevation differ across populations, and if so, why? and (3) does genetic differentiation or phenotypic plasticity drive trait variation within and among populations? We found that internode length, shoot length, leaf dry mass, and leaf area varied along elevation, but that these responses were generally unique to one population, suggesting that trait responses to environmental gradients are population-specific. A common garden experiment identified nogenetic basis to variation along elevation or among populations in any trait, suggesting that plasticity drives local and regional trait variation and may play a key role in the persistence of plant species such as R. maximum with contemporary climate change. Overall, our findings highlight the importance of examining multiple locations in future elevation studies and indicate that, for a given plant species, the magnitude of trait responses to global climate change may vary by location

    Data from: Plant-soil feedbacks mediate shrub expansion in declining forests, but only in the right light

    No full text
    1. Contemporary global change, including the widespread mortality of foundation tree species, is altering ecosystems and plant communities at unprecedented rates. Plant-soil interactions drive myriad community dynamics, and we hypothesized such interactions may be an important driver of succession following the loss of foundation tree species. 2. We examined whether plant-soil biota interactions, in the context of a putatively important light gradient associated with foundation tree decline, mediate the expansion of Rhododendron maximum in southeastern US forests where Tsuga canadensis (eastern hemlock), a dominant foundation tree species, is in decline. Using an 11-month, controlled inoculation experiment paired with Illumina sequencing, we tested the following hypotheses: (1) Relative to conspecific (R. maximum-conditioned) soils, R. maximum seedlings have higher performance in soils conditioned by T. canadensis and lower performance in interspace soils (conditioned by neither T. canadensis nor R. maximum) due to variation in soil fungal biota, and (2) seedling performance is greater in high light versus low light environments (matching environments under infested versus uninfested T. canadensis crowns, respectively). 3. In partial support of the first hypothesis, we found that R. maximum seedling performance was highest in T. canadensis-conditioned and R. maximum-conditioned soils and lowest in interspace soils. Mechanistically, soils conditioned by T. canadensis and R. maximum had more ericoid and ectomycorrhizal fungi, less saprotrophic fungi, and were less species-rich than interspace soils, and variation in these community traits predicted substantial variation in R. maximum seedling biomass. However, in support of our second hypothesis, soil effects on plant performance were evident in high light only; in low light, soil inoculation did not affect plant performance and plants performed worse. 4. Synthesis. Our findings suggest interactions with soil biota act synergistically with altered abiotic environments to mediate species responses to widespread foundation tree mortality, providing evidence for a novel mechanism of plant response to large-scale disturbance. Examining plant-soil interactions in the context of relevant abiotic gradients can therefore enhance our understanding, predictions, and management of community development processes following forest disturbance
    corecore