444 research outputs found
The Gerasimov-Drell-Hearn sum rule and the infinite-momentum limit
We study the current-algebra approach to the Gerasimov-Drell-Hearn sum rule,
paying particular attention to the infinite-momentum limit. Employing the
order-alpha^2 Weinberg-Salam model of weak interactions as a testing ground, we
find that the legitimacy of the infinite-momentum limit is intimately connected
with the validity of the naive equal-times algebra of electric charge
densities. Our results considerably reduce the reliability of a recently
proposed modification of the Gerasimov-Drell-Hearn sum rule, originating from
an anomalous charge-density algebra.Comment: 12 pages; 6 figures; LaTeX; submitted to Z.Phys.
Dispersion Effects in Nucleon Polarisabilities
We present a formalism to extract the dynamical nucleon polarisabilities
defined via a multipole expansion of the structure amplitudes in nucleon
Compton scattering. In contradistinction to the static polarisabilities,
dynamical polarisabilities gauge the response of the internal degrees of
freedom of a composed object to an external, real photon field of arbitrary
energy. Being energy dependent, they therefore contain additional information
about dispersive effects induced by internal relaxation mechanisms, baryonic
resonances and meson production thresholds of the nucleon. We give explicit
formulae to extract the dynamical electric and magnetic dipole as well as
quadrupole polarisabilities from low energy nucleon Compton scattering up to
the one pion production threshold and discuss the connection to the definition
of static nucleon polarisabilities. As a concrete example, we examine the
results of leading order Heavy Baryon Chiral Perturbation Theory for the four
leading spin independent iso-scalar polarisabilities of the nucleon. Finally,
we consider the possible r{\^o}le of energy dependent effects in low energy
extractions of the iso-scalar dipole polarisabilities from Compton scattering
on the deuteron.Comment: 17 pages LaTeX2e with 2 figures, using includegraphicx (5 .eps
files). Minor corrections, references updated. Contents identical to version
to appear in Phys. Rev. C 65, spelling differen
Overview of the Nordic Seas CARINA data and salinity measurements
Water column data of carbon and carbon relevant hydrographic and hydrochemical parameters from 188 previously non-publicly available cruises in the Arctic, Atlantic, and Southern Ocean have been retrieved and merged into a new database: CARINA (CARbon IN the Atlantic). The data have been subject to rigorous quality control (QC) in order to ensure highest possible quality and consistency. The data for most of the parameters included were examined in order to quantify systematic biases in the reported values, i.e. secondary quality control. Significant biases have been corrected for in the data products, i.e. the three merged files with measured, calculated and interpolated values for each of the three CARINA regions; the Arctic Mediterranean Seas (AMS), the Atlantic (ATL) and the Southern Ocean (SO). With the adjustments the CARINA database is consistent both internally as well as with GLODAP (Key et al., 2004) and is suitable for accurate assessments of, for example, oceanic carbon inventories and uptake rates and for model validation. The Arctic Mediterranean Seas include the Arctic Ocean and the Nordic Seas, and the quality control was carried out separately in these two areas. This contribution provides an overview of the CARINA data from the Nordic Seas and summarises the findings of the QC of the salinity data. One cruise had salinity data that were of questionable quality, and these have been removed from the data product. An evaluation of the consistency of the quality controlled salinity data suggests that they are consistent to at least ±0.005
Nonlocal electrostatics in heterogeneous suspensions using a point-dipole model
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder
Compton scattering on the nucleon at intermediate energies and polarizabilities in a microscopic model
A microscopic calculation of Compton scattering on the nucleon is presented
which encompasses the lowest energies -- yielding nucleon polarizabilities --
and extends to energies of the order of 600 MeV. We have used the covariant
"Dressed K-Matrix Model" obeying the symmetry properties which are appropriate
in the different energy regimes. In particular, crossing symmetry, gauge
invariance and unitarity are satisfied. The extent of violation of analyticity
(causality) is used as an expansion parameter.Comment: 35 pages, 15 figures, using REVTeX. Modified version to be published
in Phys. Rev. C, more extensive comparison with data for Compton scattering,
all results unchange
The P_33(1232) resonance contribution into the amplitudes M_{1+}^{3/2},E_{1+}^{3/2},S_{1+}^{3/2} from an analysis of the p(e,e'p)\pi^0 data at Q^2 = 2.8, 3.2, and 4 (GeV/c)^2 within dispersion relation approach
Within the fixed-t dispersion relation approach we have analysed the TJNAF
and DESY data on the exclusive p(e,e'p)\pi^0 reaction in order to find the
P_{33}(1232) resonance contribution into the multipole amplitudes
M_{1+}^{3/2},E_{1+}^{3/2},S_{1+}^{3/2}. As an input for the resonance and
nonresonance contributions into these amplitudes the earlier obtained solutions
of the integral equations which follow from dispersion relations are used. The
obtained values of the ratio E2/M1 for the \gamma^* N \to P_{33}(1232)
transition are: 0.039\pm 0.029, 0.121\pm 0.032, 0.04\pm 0.031 for Q^2= 2.8,
3.2, and 4 (GeV/c)^2, respectively. The comparison with the data at low Q^2
shows that there is no evidence for the presence of the visible pQCD
contribution into the transition \gamma N \to P_{33}(1232) at Q^2=3-4 GeV^2.
The ratio S_{1+}^{3/2}/M_{1+}^{3/2} for the resonance parts of multipoles is:
-0.049\pm 0.029, -0.099\pm 0.041, -0.085\pm 0.021 for Q^2= 2.8, 3.2, and 4
(GeV/c)^2, respectively. Our results for the transverse form factor G_T(Q^2) of
the \gamma^* N \to P_{33}(1232) transition are lower than the values obtained
from the inclusive data. With increasing Q^2, Q^4G_T(Q^2) decreases, so there
is no evidence for the presence of the pQCD contribution here too
Automatic radiographic quantification of hand osteoarthritis; accuracy and sensitivity to change in joint space width in a phantom and cadaver study
This is the final version of the article. Available from Springer Verlag via the DOI in this record.OBJECTIVE: To validate a newly developed quantification method that automatically detects and quantifies the joint space width (JSW) in hand radiographs. Repeatability, accuracy and sensitivity to changes in JSW were determined. The influence of joint location and joint shape on the measurements was tested. METHODS: A mechanical micrometer set-up was developed to define and adjust the true JSW in an acrylic phantom joint and in human cadaver-derived phalangeal joints. Radiographic measurements of the JSW were compared to the true JSW. Repeatability, systematic error (accuracy) and sensitivity (defined as the smallest detectable difference (SDD)) were determined. The influence of joint position on the JSW measurement was assessed by varying the location of the acrylic phantom on the X-ray detector with respect to the X-ray beam and the influence of joint shape was determined by using morphologically different human cadaver joints. RESULTS: The mean systematic error was 0.052 mm in the phantom joint and 0.210 mm in the cadaver experiment. In the phantom experiments, the repeatability was high (SDD = 0.028 mm), but differed slightly between joint locations (p = 0.046), and a change in JSW of 0.037 mm could be detected. Dependent of the joint shape in the cadaver hand, a change in JSW between 0.018 and 0.047 mm could be detected. CONCLUSIONS: The automatic quantification method is sensitive to small changes in JSW. Considering the published data of JSW decline in the normal and osteoarthritic population, the first signs of OA progression with this method can be detected within 1 or 2 years.This work was funded by the Dutch Arthritis Association (Reumafonds). The study sponsor had no involvement in study design, data collection, data analysis, or interpretation of the results
Photon- and meson-induced reactions on the nucleon
In an unitary effective Lagrangian model we develop a unified description of
both meson scattering and photon-induced reactions on the nucleon. Adding the
photon to an already existing model for meson-nucleon scattering yields both
Compton and meson photoproduction amplitudes. In a simultaneous fit to all
available data involving the final states , , ,
and the parameters of the nucleon resonances are
extracted.Comment: 57 pages, 14 figures, LaTex (uses Revtex and graphicx). Submitted to
Phys. Rev. C. References updated, Fig. 14 change
Low-Energy Compton Scattering of Polarized Photons on Polarized Nucleons
The general structure of the cross section of scattering with
polarized photon and/or nucleon in initial and/or final state is systematically
described and exposed through invariant amplitudes. A low-energy expansion of
the cross section up to and including terms of order is given which
involves ten structure parameters of the nucleon (dipole, quadrupole,
dispersion, and spin polarizabilities). Their physical meaning is discussed in
detail. Using fixed-t dispersion relations, predictions for these parameters
are obtained and compared with results of chiral perturbation theory. It is
emphasized that Compton scattering experiments at large angles can fix the most
uncertain of these structure parameters. Predictions for the cross section and
double-polarization asymmetries are given and the convergence of the expansion
is investigated. The feasibility of the experimental determination of some of
the struture parameters is discussed.Comment: 41 pages of text, 9 figures; minor revisions prior to publication in
Phys. Rev.
- …