46 research outputs found

    Predicting fadeout versus persistence of paratuberculosis in a dairy cattle herd for management and control purposes: a modelling study

    Get PDF
    Epidemiological models enable to better understand the dynamics of infectious diseases and to assess ex-ante control strategies. For Mycobacterium avium subsp. paratuberculosis (Map), possible transmission routes have been described, but Map spread in a herd and the relative importance of the routes are currently insufficiently understood to prioritize control measures. We aim to predict early after Map introduction in a dairy cattle herd whether infection is likely to fade out or persist, when no control measures are implemented, using a modelling approach. Both vertical transmission and horizontal transmission via the ingestion of colostrum, milk, or faeces present in the contaminated environment were modelled. Calf-to-calf indirect transmission was possible. Six health states were represented: susceptible, transiently infectious, latently infected, subclinically infected, clinically affected, and resistant. The model was partially validated by comparing the simulated prevalence with field data. Housing facilities and contacts between animals were specifically considered for calves and heifers. After the introduction of one infected animal in a naive herd, fadeout occurred in 66% of the runs. When Map persisted, the prevalence of infected animals increased to 88% in 25 years. The two main transmission routes were via the farm's environment and in utero transmission. Calf-to-calf transmission was minor. Fadeout versus Map persistence could be differentiated with the number of clinically affected animals, which was rarely above one when fadeout occurred. Therefore, early detection of affected animals is crucial in preventing Map persistence in dairy herds

    African swine fever epidemiology and control

    Get PDF
    African swine fever is a devastating disease that can result in death in almost all infected pigs. The continuing spread of African swine fever from Africa to Europe and recently to the high–pig production countries of China and others in Southeast Asia threatens global pork production and food security. The African swine fever virus is an unusual complex DNA virus and is not related to other viruses. This has presented challenges for vaccine development, and currently none is available. The virus is extremely well adapted to replicate in its hosts in the sylvatic cycle in East and South Africa. Its spread to other regions, with different wildlife hosts, climatic conditions, and pig production systems, has revealed unexpected epidemiological scenarios and different challenges for control. Here we review the epidemiology of African swine fever in these different scenarios and methods used for control. We also discuss progress toward vaccine development and research priorities to better understand this complex disease and improve control

    Pastoralist knowledge of sheep and goat disease and implications for peste des petits ruminants virus control in the Afar Region of Ethiopia

    Get PDF
    Pastoralist areas of Ethiopia are vulnerable to drought, causing livelihood loss and famine. One approach to increasing pastoralist resilience is the control of livestock disease, but there is limited information from pastoralist areas to inform control strategies. This study aimed to explore pastoralist concepts of small ruminant disease and implications for infectious disease surveillance and control in the pastoralist Afar Region. During 2013–14, qualitative and quantitative methods were applied in two villages of one district in the mid-west of the region. Semi-structured group interviews, incorporating participatory tools, explored pastoralist knowledge of small ruminant diseases and their impact. These were followed by multiple visits in different seasons to 70 households for semi-structured and informal interviews, observation of management practices, clinical examinations, and weekly questionnaires of mortality and morbidity. Thematic analysis was applied to interview transcripts and field notes, and descriptive statistical analysis to quantitative data. Afar concepts of disease causation, terminology and treatment were predominantly naturalistic, related to observable signs and physical causes, rather than personalistic factors (misfortune due to magical or spiritual agents). Disease occurrence was associated with malnutrition and adverse weather, and disease spread with contact between animals during grazing, watering and migration. Disease occurrence varied by season with most syndromes increasing in frequency during the dry season. Names for disease syndromes were related to the main clinical sign or body part affected; 70 terms were recorded for respiratory syndromes, diarrhoea, sheep and goat pox, lameness, skin diseases, ectoparasites, urinary and neurological syndromes and abortion. Some syndromes with pathognomonic signs could be linked to biomedical diagnoses but most were non-specific with several possible diagnoses. The syndromes causing greatest impact were diarrhoea and respiratory disease, due to mortality, reduced milk production, weight loss, abortion, weak offspring and reduced market value. Afar applied a range of traditional methods and modern medicines to prevent or treat disease, based on livestock keeper knowledge, advice of local specialists and occasionally advice from district veterinarians or animal health workers. In relation to surveillance for peste des petits ruminants (PPR), several terms were used for PPR-like syndromes, depending on the predominance of respiratory or diarrhoea signs. Therefore, whenever these terms are encountered during surveillance, the associated disease events should be fully investigated and samples collected for laboratory confirmation. The Afar naturalistic concepts of disease parallel biomedical concepts and provide a good foundation for communication between veterinarians and pastoralists in relation to PPR surveillance and control measures
    corecore