3,697 research outputs found

    Phase reconstruction of strong-field excited systems by transient-absorption spectroscopy

    Full text link
    We study the evolution of a V-type three-level system, whose two resonances are coherently excited and coupled by two ultrashort laser pump and probe pulses, separated by a varying time delay. We relate the quantum dynamics of the excited multi-level system to the absorption spectrum of the transmitted probe pulse. In particular, by analyzing the quantum evolution of the system, we interpret how atomic phases are differently encoded in the time-delay-dependent spectral absorption profiles when the pump pulse either precedes or follows the probe pulse. We experimentally apply this scheme to atomic Rb, whose fine-structure-split 5s\,^2S_{1/2}\rightarrow 5p\,^2P_{1/2} and 5s\,^2S_{1/2}\rightarrow 5p\,^2P_{3/2} transitions are driven by the combined action of a pump pulse of variable intensity and a delayed probe pulse. The provided understanding of the relationship between quantum phases and absorption spectra represents an important step towards full time-dependent phase reconstruction (quantum holography) of bound-state wave-packets in strong-field light-matter interactions with atoms, molecules and solids.Comment: 5 pages, 4 figure

    Chaotic exploration and learning of locomotion behaviours

    Get PDF
    We present a general and fully dynamic neural system, which exploits intrinsic chaotic dynamics, for the real-time goal-directed exploration and learning of the possible locomotion patterns of an articulated robot of an arbitrary morphology in an unknown environment. The controller is modeled as a network of neural oscillators that are initially coupled only through physical embodiment, and goal-directed exploration of coordinated motor patterns is achieved by chaotic search using adaptive bifurcation. The phase space of the indirectly coupled neural-body-environment system contains multiple transient or permanent self-organized dynamics, each of which is a candidate for a locomotion behavior. The adaptive bifurcation enables the system orbit to wander through various phase-coordinated states, using its intrinsic chaotic dynamics as a driving force, and stabilizes on to one of the states matching the given goal criteria. In order to improve the sustainability of useful transient patterns, sensory homeostasis has been introduced, which results in an increased diversity of motor outputs, thus achieving multiscale exploration. A rhythmic pattern discovered by this process is memorized and sustained by changing the wiring between initially disconnected oscillators using an adaptive synchronization method. Our results show that the novel neurorobotic system is able to create and learn multiple locomotion behaviors for a wide range of body configurations and physical environments and can readapt in realtime after sustaining damage

    Quaternion-Octonion SU(3) Flavor Symmetry

    Full text link
    Starting with the quaternionic formulation of isospin SU(2) group, we have derived the relations for different components of isospin with quark states. Extending this formalism to the case of SU(3) group we have considered the theory of octonion variables. Accordingly, the octonion splitting of SU(3) group have been reconsidered and various commutation relations for SU(3) group and its shift operators are also derived and verified for different iso-spin multiplets i.e. I, U and V- spins. Keywords: SU(3), Quaternions, Octonions and Gell Mann matrices PACS NO: 11.30.Hv: Flavor symmetries; 12.10-Dm: Unified field theories and models of strong and electroweak interaction

    Effect of metal precursor on Cu/ZnO/Al<sub>2</sub>O<sub>3</sub> synthesized by flame spray pyrolysis for direct DME production

    Get PDF
    Cu/ZnO/Al2O3 catalysts were synthesized by flame spray pyrolysis (FSP). The effect of different metal precursor types, i.e. metal nitrates and organometallics, on the catalytic properties was investigated. Organometallic precursors are commonly used for flame spray pyrolysis because small nanoparticles can be produced. In this study, we have obtained nanosized copper and zinc oxide clusters also from the nitrate precursors. Characterization was applied to reveal the difference between the clusters obtained from the different precursor types. Both precursors allowed the formation of well-ordered Cu/ZnO/Al2O3 particles with similar size according to TEM investigations. However, the catalyst from metal nitrate precursors possessed a lower reduction temperature, a higher active copper surface area, and a lower overall BET surface area than the one from the organometallic precursor. The catalytic performance of the obtained catalysts was investigated in the direct DME synthesis from synthesis gas. Methanol dehydration catalyst, H-ZSM-5, was therefore admixed to the FSP powders in a pre-defined amount; the FSP powders served as methanol synthesis catalyst in the mixture. The catalyst from metal nitrate precursors showed higher conversion of syngas than the catalyst from the organometallic precursors at same reaction conditions. This effect can be explained mainly by the higher copper surface area. Catalysts with different Cu/Zn ratio were also tested and the best catalyst was further studied by variation of the reaction conditions. In conclusion, we have demonstrated an efficient utilization of less expensive precursor materials for flame spray pyrolysis for production of Cu/ZnO/Al2O3 catalysts

    Feedback from the heart: emotional learning and memory is controlled by cardiac cycle, interoceptive accuracy and personality

    Get PDF
    Feedback processing is critical to trial-and-error learning. Here, we examined whether interoceptive signals concerning the state of cardiovascular arousal influence the processing of reinforcing feedback during the learning of ‘emotional’ face-name pairs, with subsequent effects on retrieval. Participants (N = 29) engaged in a learning task of face-name pairs (fearful, neutral, happy faces). Correct and incorrect learning decisions were reinforced by auditory feedback, which was delivered either at cardiac systole (on the heartbeat, when baroreceptors signal the contraction of the heart to the brain), or at diastole (between heartbeats during baroreceptor quiescence). We discovered a cardiac influence on feedback processing that enhanced the learning of fearful faces in people with heightened interoceptive ability. Individuals with enhanced accuracy on a heartbeat counting task learned fearful face-name pairs better when feedback was given at systole than at diastole. This effect was not present for neutral and happy faces. At retrieval, we also observed related effects of personality: First, individuals scoring higher for extraversion showed poorer retrieval accuracy. These individuals additionally manifested lower resting heart rate and lower state anxiety, suggesting that attenuated levels of cardiovascular arousal in extraverts underlies poorer performance. Second, higher extraversion scores predicted higher emotional intensity ratings of fearful faces reinforced at systole. Third, individuals scoring higher for neuroticism showed higher retrieval confidence for fearful faces reinforced at diastole. Our results show that cardiac signals shape feedback processing to influence learning of fearful faces, an effect underpinned by personality differences linked to psychophysiological arousal

    A Hardy's Uncertainty Principle Lemma in Weak Commutation Relations of Heisenberg-Lie Algebra

    Full text link
    In this article we consider linear operators satisfying a generalized commutation relation of a type of the Heisenberg-Lie algebra. It is proven that a generalized inequality of the Hardy's uncertainty principle lemma follows. Its applications to time operators and abstract Dirac operators are also investigated
    • …
    corecore