1,806 research outputs found

    Sampling of operators

    Full text link
    Sampling and reconstruction of functions is a central tool in science. A key result is given by the sampling theorem for bandlimited functions attributed to Whittaker, Shannon, Nyquist, and Kotelnikov. We develop an analogous sampling theory for operators which we call bandlimited if their Kohn-Nirenberg symbols are bandlimited. We prove sampling theorems for such operators and show that they are extensions of the classical sampling theorem

    Estimation of Overspread Scattering Functions

    Full text link
    In many radar scenarios, the radar target or the medium is assumed to possess randomly varying parts. The properties of a target are described by a random process known as the spreading function. Its second order statistics under the WSSUS assumption are given by the scattering function. Recent developments in operator sampling theory suggest novel channel sounding procedures that allow for the determination of the spreading function given complete statistical knowledge of the operator echo from a single sounding by a weighted pulse train. We construct and analyze a novel estimator for the scattering function based on these findings. Our results apply whenever the scattering function is supported on a compact subset of the time-frequency plane. We do not make any restrictions either on the geometry of this support set, or on its area. Our estimator can be seen as a generalization of an averaged periodogram estimator for the case of a non-rectangular geometry of the support set of the scattering function

    Identification of stochastic operators

    Full text link
    Based on the here developed functional analytic machinery we extend the theory of operator sampling and identification to apply to operators with stochastic spreading functions. We prove that identification with a delta train signal is possible for a large class of stochastic operators that have the property that the autocorrelation of the spreading function is supported on a set of 4D volume less than one and this support set does not have a defective structure. In fact, unlike in the case of deterministic operator identification, the geometry of the support set has a significant impact on the identifiability of the considered operator class. Also, we prove that, analogous to the deterministic case, the restriction of the 4D volume of a support set to be less or equal to one is necessary for identifiability of a stochastic operator class

    Remarks on multivariate Gaussian Gabor frames

    Full text link
    We report on initial findings on Gabor systems with multivariate Gaussian window. Unlike the existing characterisation for dimension one in terms of lattice density, our results indicate that the behavior of Gaussians in higher-dimensional Gabor systems is intricate and further exploration is a valuable and challenging task.Comment: Reference style change

    Sampling and reconstruction of operators

    Full text link
    We study the recovery of operators with bandlimited Kohn-Nirenberg symbol from the action of such operators on a weighted impulse train, a procedure we refer to as operator sampling. Kailath, and later Kozek and the authors have shown that operator sampling is possible if the symbol of the operator is bandlimited to a set with area less than one. In this paper we develop explicit reconstruction formulas for operator sampling that generalize reconstruction formulas for bandlimited functions. We give necessary and sufficient conditions on the sampling rate that depend on size and geometry of the bandlimiting set. Moreover, we show that under mild geometric conditions, classes of operators bandlimited to an unknown set of area less than one-half permit sampling and reconstruction. A similar result considering unknown sets of area less than one was independently achieved by Heckel and Boelcskei. Operators with bandlimited symbols have been used to model doubly dispersive communication channels with slowly-time-varying impulse response. The results in this paper are rooted in work by Bello and Kailath in the 1960s.Comment: Submitted to IEEE Transactions on Information Theor

    Quantitative mechanisms of DNA damage sensing and signaling

    No full text
    DNA damage occurs abundantly during normal cellular proliferation. This necessitates that cellular DNA damage response and checkpoint pathways monitor the cellular DNA damage load and that DNA damage signaling is quantitative. Yet, how DNA lesions are counted and converted into a quantitative response remains poorly understood. We have recently obtained insights into this question investigating DNA damage signaling elicited by single-stranded DNA (ssDNA). Intriguingly, our findings suggest that local and global DNA damage signaling react differentially to increasing amounts of DNA damage. In this mini-review, we will discuss these findings and put them into perspective of current knowledge on the DNA damage response

    Identification of Matrices Having a Sparse Representation

    Get PDF
    We consider the problem of recovering a matrix from its action on a known vector in the setting where the matrix can be represented efficiently in a known matrix dictionary. Connections with sparse signal recovery allows for the use of efficient reconstruction techniques such as Basis Pursuit (BP). Of particular interest is the dictionary of time-frequency shift matrices and its role for channel estimation and identification in communications engineering. We present recovery results for BP with the time-frequency shift dictionary and various dictionaries of random matrices

    Cornerstones of Sampling of Operator Theory

    Full text link
    This paper reviews some results on the identifiability of classes of operators whose Kohn-Nirenberg symbols are band-limited (called band-limited operators), which we refer to as sampling of operators. We trace the motivation and history of the subject back to the original work of the third-named author in the late 1950s and early 1960s, and to the innovations in spread-spectrum communications that preceded that work. We give a brief overview of the NOMAC (Noise Modulation and Correlation) and Rake receivers, which were early implementations of spread-spectrum multi-path wireless communication systems. We examine in detail the original proof of the third-named author characterizing identifiability of channels in terms of the maximum time and Doppler spread of the channel, and do the same for the subsequent generalization of that work by Bello. The mathematical limitations inherent in the proofs of Bello and the third author are removed by using mathematical tools unavailable at the time. We survey more recent advances in sampling of operators and discuss the implications of the use of periodically-weighted delta-trains as identifiers for operator classes that satisfy Bello's criterion for identifiability, leading to new insights into the theory of finite-dimensional Gabor systems. We present novel results on operator sampling in higher dimensions, and review implications and generalizations of the results to stochastic operators, MIMO systems, and operators with unknown spreading domains
    corecore