38 research outputs found

    Retinal regions shape human and murine MĂŒller cell proteome profile and functionality

    Full text link
    The human macula is a highly specialized retinal region with pit‐like morphology and rich in cones. How MĂŒller cells, the principal glial cell type in the retina, are adapted to this environment is still poorly understood. We compared proteomic data from cone‐ and rod‐rich retinae from human and mice and identified different expression profiles of cone‐ and rod‐associated MĂŒller cells that converged on pathways representing extracellular matrix and cell adhesion. In particular, epiplakin (EPPK1), which is thought to play a role in intermediate filament organization, was highly expressed in macular MĂŒller cells. Furthermore, EPPK1 knockout in a human MĂŒller cell‐derived cell line led to a decrease in traction forces as well as to changes in cell size, shape, and filopodia characteristics. We here identified EPPK1 as a central molecular player in the region‐specific architecture of the human retina, which likely enables specific functions under the immense mechanical loads in vivo

    Candidiasis caused by Candida kefyr in a neonate: Case report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Systemic <it>Candidia </it>infections are of major concern in neonates, especially in those with risk factors such as longer use of broad spectrum antibiotics. Recent studies showed that also term babies with underlying gastrointestinal or urinary tract abnormalities are much more prone to systemic <it>Candida </it>infection. We report a very rare case of candidiasis caused by <it>Candida kefyr </it>in a term neonate.</p> <p>Case Presentation</p> <p>Renal agenesis on the left side was diagnosed antenatally and anal atresia postnatally. Moreover, a vesico-ureteral-reflux (VUR) grade V was detected by cystography. The first surgical procedure, creating a protective colostoma, was uneventful. Afterwards our patient developed urosepsis caused by <it>Enterococcus faecalis </it>and was treated with piperacillin. The child improved initially, but deteriorated again. A further urine analysis revealed <it>Candida kefyr </it>in a significant number. As antibiotic resistance data about this non-<it>albicans Candida </it>species are limited, we started liposomal amphotericin B (AMB), but later changed to fluconazole after receiving the antibiogram. Candiduria persisted and abdominal imaging showed a <it>Candida </it>pyelonephritis. Since high grade reflux was prevalent we instilled AMB into the child's bladder as a therapeutic approach. While undergoing surgery (creating a neo-rectum) a recto-vesical fistula could be shown and subsequently was resected. The child recovered completely under systemic fluconazole therapy over 3 months.</p> <p>Conclusions</p> <p>Candidiasis is still of major concern in neonates with accompanying risk factors. As clinicians are confronted with an increasing number of non-<it>albicans Candida </it>species, knowledge about these pathogens and their sensitivities is of major importance.</p

    As in Real Estate, Location Matters: Cellular Expression of Complement Varies Between Macular and Peripheral Regions of the Retina and Supporting Tissues.

    Get PDF
    The cellular events that dictate the initiation of the complement pathway in ocular degeneration, such as age-related macular degeneration (AMD), is poorly understood. Using gene expression analysis (single cell and bulk), mass spectrometry, and immunohistochemistry, we dissected the role of multiple retinal and choroidal cell types in determining the complement homeostasis. Our scRNA-seq data show that the cellular response to early AMD is more robust in the choroid, particularly in fibroblasts, pericytes and endothelial cells. In late AMD, complement changes were more prominent in the retina especially with the expression of the classical pathway initiators. Notably, we found a spatial preference for these differences. Overall, this study provides insights into the heterogeneity of cellular responses for complement expression and the cooperation of neighboring cells to complete the pathway in healthy and AMD eyes. Further, our findings provide new cellular targets for therapies directed at complement

    Potentially pathogenic yeasts from soil of children’s recreational areas in the city of ƁódĆș (Poland)

    Full text link
    Objectives: Yeasts may become potential human and animal pathogens, particularly for individuals with a depressed immune system. Their presence in the environment, especially in soil, may favour their spread into human ontocenoses. Materials and Methods: Eighty-four soil samples obtained from 21 children's recreational sites in ƁódĆș in autumn 2010 and spring 2011 were evaluated. The yeasts were isolated by classical microbiological methods and identified on the basis of morphological and biochemical features. Results: The fungi were found in 73.8% and in 69.0% of the examined samples collected in autumn and spring, respectively. Among 97 isolates of yeasts, the species potentially pathogenic to humans and animals were Candida colliculosa, C. guilliermondii, C. humicola, C. inconspicua, C. lambica, C. lusitaniae, C. pelliculosa, C. tropicalis, Cryptococcus albidus, C. laurentii, C. neoformans, C. terreus, Kloeckera japonica, Geotrichum candidum, G. penicillatum, Rhodotorula mucilaginosa, R. glutinis, Saccharomyces cerevisiae, Sporobolomyces salmonicolor and Trichosporon cutaneum. The most frequently isolated fungi included the genus Cryptococcus (38 isolates) and two species: Rhodotorula glutinis (15), Trichosporon cutaneum (14). C. neoformans, an etiological factor of cryptococcal meningitis, was present in the sandpits of 3 kindergartens. The Candida species were identified from park playgrounds and school sports fields mainly in autumn 2010 (14 isolates), in spring 2011 - only 1 isolate. The concentration of fungal species in particular samples varied considerably, but in the majority of samples, fungi were present at concentration of up to 1×102 CFU/1 g of soil. Conclusions: Yeasts were present in the soil of parks, schools and kindergarten recreational areas; the fact may pose a health risk to humans, especially to children, and this type of biological pollution should be regarded as a potential public health concern

    Capric Acid Secreted by S. boulardii Inhibits C. albicans Filamentous Growth, Adhesion and Biofilm Formation

    Get PDF
    Candidiasis are life-threatening systemic fungal diseases, especially of gastro intestinal track, skin and mucous membranes lining various body cavities like the nostrils, the mouth, the lips, the eyelids, the ears or the genital area. Due to increasing resistance of candidiasis to existing drugs, it is very important to look for new strategies helping the treatment of such fungal diseases. One promising strategy is the use of the probiotic microorganisms, which when administered in adequate amounts confer a health benefit. Such a probiotic microorganism is yeast Saccharomyces boulardii, a close relative of baker yeast. Saccharomyces boulardii cells and their extract affect the virulence factors of the important human fungal pathogen C. albicans, its hyphae formation, adhesion and biofilm development. Extract prepared from S. boulardii culture filtrate was fractionated and GC-MS analysis showed that the active fraction contained, apart from 2-phenylethanol, caproic, caprylic and capric acid whose presence was confirmed by ESI-MS analysis. Biological activity was tested on C. albicans using extract and pure identified compounds. Our study demonstrated that this probiotic yeast secretes into the medium active compounds reducing candidal virulence factors. The chief compound inhibiting filamentous C. albicans growth comparably to S. boulardii extract was capric acid, which is thus responsible for inhibition of hyphae formation. It also reduced candidal adhesion and biofilm formation, though three times less than the extract, which thus contains other factors suppressing C. albicans adherence. The expression profile of selected genes associated with C. albicans virulence by real-time PCR showed a reduced expression of HWP1, INO1 and CSH1 genes in C. albicans cells treated with capric acid and S. boulardii extract. Hence capric acid secreted by S. boulardii is responsible for inhibition of C. albicans filamentation and partially also adhesion and biofilm formation

    Validation of the Tetracycline Regulatable Gene Expression System for the Study of the Pathogenesis of Infectious Disease

    Get PDF
    Understanding the pathogenesis of infectious disease requires the examination and successful integration of parameters related to both microbial virulence and host responses. As a practical and powerful method to control microbial gene expression, including in vivo, the tetracycline-regulatable system has recently gained the favor of many investigative groups. However, some immunomodulatory effects of the tetracyclines, including doxycycline, could potentially limit its use to evaluate host responses during infection. Here we have used a well-established murine model of disseminated candidiasis, which is highly dependent on both the virulence displayed by the fungal cells and on the host immune status, to validate the use of this system. We demonstrate that the pathogenesis of the wild type C. albicans CAF2-1 strain, which does not contain any tet-regulatable element, is not affected by the presence of doxycycline. Moreover levels of key cytokines, chemokines and many other biomarkers, as determined by multi-analyte profiling, remain essentially unaltered by the presence of the antibiotic during infection. Our results indicate that the levels of doxycycline needed to control the tetracycline regulatable promoter gene expression system have no detectable effect on global host responses during candidiasis. Because tet-regulatable systems are now being increasingly used in a variety of pathogenic microorganisms, these observations have wide implications in the field of infectious diseases

    Low Dosage of Histone H4 Leads to Growth Defects and Morphological Changes in Candida albicans

    Get PDF
    Chromatin function depends on adequate histone stoichiometry. Alterations in histone dosage affect transcription and chromosome segregation, leading to growth defects and aneuploidies. In the fungal pathogen Candida albicans, aneuploidy formation is associated with antifungal resistance and pathogenesis. Histone modifying enzymes and chromatin remodeling proteins are also required for pathogenesis. However, little is known about the mechanisms that generate aneuploidies or about the epigenetic mechanisms that shape the response of C. albicans to the host environment. Here, we determined the impact of histone H4 deficit in the growth and colony morphology of C. albicans. We found that C. albicans requires at least two of the four alleles that code for histone H4 (HHF1 and HHF22) to grow normally. Strains with only one histone H4 allele show a severe growth defect and unstable colony morphology, and produce faster-growing, morphologically stable suppressors. Segmental or whole chromosomal trisomies that increased wild-type histone H4 copy number were the preferred mechanism of suppression. This is the first study of a core nucleosomal histone in C. albicans, and constitutes the prelude to future, more detailed research on the function of histone H4 in this important fungal pathogen

    PDGF Receptor Alpha Signaling Is Key for Muller Cell Homeostasis Functions

    No full text
    Muller cells, the major retinal macroglia, are key to maintaining vascular integrity as well as retinal fluid and ion homeostasis. Although platelet derived growth factor (PDGF) receptor expression in Muller glia has been reported earlier, their actual role for Muller cell function and intimate interaction with cells of the retinal neurovascular unit remains unclear. To close this gap of knowledge, Muller cell-specific PDGF receptor alpha (PDGFR alpha) knockout (KO) mice were generated, characterized, and subjected to a model of choroidal neovascularization (CNV). PDGFR alpha-deficient Muller cells could not counterbalance hypoosmotic stress as efficiently as their wildtype counterparts. In wildtypes, the PDGFR alpha ligand PDGF-BB prevented Muller cell swelling induced by the administration of barium ions. This effect could be blocked by the PDGFR family inhibitor AC710. PDGF-BB could not restore the capability of an efficient volume regulation in PDGFR alpha KO Muller cells. Additionally, PDGFR alpha KO mice displayed reduced rod and cone-driven light responses. Altogether, these findings suggest that Muller glial PDGFR alpha is central for retinal functions under physiological conditions. In contrast, Muller cell-specific PDGFR alpha KO resulted in less vascular leakage and smaller lesion areas in the CNV model. Of note, the effect size was comparable to pharmacological blockade of PDGF signaling alone or in combination with anti-vascular endothelial growth factor (VEGF) therapy-a treatment regimen currently being tested in clinical trials. These data imply that targeting PDGF to treat retinal neovascular diseases may have short-term beneficial effects, but may elicit unwarranted side effects given the putative negative effects on Muller cell homeostatic functions potentially interfering with a long-term positive outcome

    Release of VAMP5‐positive extracellular vesicles by retinal MĂŒller glia in vivo

    No full text
    Cell-cell interactions in the central nervous system are based on the release of molecules mediating signal exchange and providing structural and trophic support through vesicular exocytosis and the formation of extracellular vesicles. The specific mechanisms employed by each cell type in the brain are incompletely understood. Here, we explored the means of communication used by Muller cells, a type of radial glial cells in the retina, which forms part of the central nervous system. Using immunohistochemical, electron microscopic, and molecular analyses, we provide evidence for the release of distinct extracellular vesicles from endfeet and microvilli of retinal Muller cells in adult mice in vivo. We identify VAMP5 as a Muller cell-specific SNARE component that is part of extracellular vesicles and responsive to ischemia, and we reveal differences between the secretomes of immunoaffinity-purified Muller cells and neurons in vitro. Our findings suggest extracellular vesicle-based communication as an important mediator of cellular interactions in the retina
    corecore