63 research outputs found

    Data quality in predictive toxicology: reproducibility of rodent carcinogenicity experiments.

    Get PDF
    We compared 121 replicate rodent carcinogenicity assays from the two parts (National Cancer Institute/National Toxicology Program and literature) of the Carcinogenic Potency Database (CPDB) to estimate the reliability of these experiments. We estimated a concordance of 57% between the overall rodent carcinogenicity classifications from both sources. This value did not improve substantially when additional biologic information (species, sex, strain, target organs) was considered. These results indicate that rodent carcinogenicity assays are much less reproducible than previously expected, an effect that should be considered in the development of structure-activity relationship models and the risk assessment process

    Hydrothermal alteration mapping of Siberian gold-ore fields based on satellite spectroscopy data

    Get PDF
    The mapping of the hydrothermal alterations in Urjahskoe and Fedorov-Kedrov gold-ore fields was conducted by applying channel relationship method (band ratio) based on ASTER spectral-zonal satellite image data. It was determined that the calculated mineral indices in ore-bearing structures are zonal. Outer ore-bearing structures revealed increased ferric mineral index values, while inner - high epidote- chlorite- calcite and muscovite- siderite mineral index values. Detected regularities could be used in identifying potential gold-ore bearing areas within identical fields based on remote sensing survey data

    Case Study on Bagging Stable Classifiers for Data Streams

    Get PDF
    Algorithms and the Foundations of Software technolog

    The online performance estimation framework: heterogeneous ensemble learning for data streams

    Get PDF
    Algorithms and the Foundations of Software technolog

    A comparative analysis of multi-level computer-assisted decision making systems for traumatic injuries

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This paper focuses on the creation of a predictive computer-assisted decision making system for traumatic injury using machine learning algorithms. Trauma experts must make several difficult decisions based on a large number of patient attributes, usually in a short period of time. The aim is to compare the existing machine learning methods available for medical informatics, and develop reliable, rule-based computer-assisted decision-making systems that provide recommendations for the course of treatment for new patients, based on previously seen cases in trauma databases. Datasets of traumatic brain injury (TBI) patients are used to train and test the decision making algorithm. The work is also applicable to patients with traumatic pelvic injuries.</p> <p>Methods</p> <p>Decision-making rules are created by processing patterns discovered in the datasets, using machine learning techniques. More specifically, CART and C4.5 are used, as they provide grammatical expressions of knowledge extracted by applying logical operations to the available features. The resulting rule sets are tested against other machine learning methods, including AdaBoost and SVM. The rule creation algorithm is applied to multiple datasets, both with and without prior filtering to discover significant variables. This filtering is performed via logistic regression prior to the rule discovery process.</p> <p>Results</p> <p>For survival prediction using all variables, CART outperformed the other machine learning methods. When using only significant variables, neural networks performed best. A reliable rule-base was generated using combined C4.5/CART. The average predictive rule performance was 82% when using all variables, and approximately 84% when using significant variables only. The average performance of the combined C4.5 and CART system using significant variables was 89.7% in predicting the exact outcome (home or rehabilitation), and 93.1% in predicting the ICU length of stay for airlifted TBI patients.</p> <p>Conclusion</p> <p>This study creates an efficient computer-aided rule-based system that can be employed in decision making in TBI cases. The rule-bases apply methods that combine CART and C4.5 with logistic regression to improve rule performance and quality. For final outcome prediction for TBI cases, the resulting rule-bases outperform systems that utilize all available variables.</p

    The Application of User Event Log Data for Mental Health and Wellbeing Analysis

    Get PDF

    Decision Tree Induction from Numeric Data Stream

    No full text

    The Weka solution to the 2004 KDD Cup

    No full text
    corecore