407 research outputs found

    Cardiovascular Benefits of GLP-1-BasedTherapies in Patients with Diabetes Mellitus Type 2: Effects on Endothelial and Vascular Dysfunction beyond Glycemic Control

    Get PDF
    Type 2 diabetes mellitus (T2DM) is a progressive multisystemic disease accompanied by vascular dysfunction and a tremendous increase in cardiovascular mortality. Numerous adipose-tissue-derived factors and beta cell dysfunction contribute to the increased cardiovascular risk in patients with T2DM. Nowadays, numerous pharmacological interventions are available to lower blood glucose levels in patients with type 2 diabetes. Beside more or less comparable glucose lowering efficacy, some of them have shown limited or probably even unfavorable effects on the cardiovascular system and overall mortality. Recently, incretin-based therapies (GLP-1 receptor agonists and DPP-IV inhibitors) have been introduced in the treatment of T2DM. Beside the effects of GLP-1 on insulin secretion, glucagon secretion, and gastrointestinal motility, recent studies suggested a couple of direct cardiovascular effects of GLP-1-based therapies. The goal of this paper is to provide an overview about the current knowledge of direct GLP-1 effects on endothelial and vascular function and potential consequences on the cardiovascular outcome in patients with T2DM treated with GLP-1 receptor agonists or DPP-IV inhibitors

    Radiative orbital electron capture by the atomic nucleus

    Get PDF
    The rate for the photon emission accompanying orbital 1S electron capture by the atomic nucleus is recalculated. While a photon can be emitted by the electron or by the nucleus, the use of the length gauge significantly suppresses the nuclear contribution. Our calculations resolve the long standing discrepancy of theoretical predictions with experimental data for ΔJ=2\Delta J=2 forbidden transitions. We illustrate the results by comparison with the data established experimentally for the first forbidden unique decays of 41^{41}Ca and 204^{204}Tl.Comment: 18 pages, 2 figures, submitted to Phys. Rev.

    Radiative electron capture in the first forbidden unique decay of 81Kr

    Full text link
    The photon spectrum accompanying the orbital K-electron capture in the first forbidden unique decay of 81Kr was measured. The total radiation intensity for the photon energies larger than 50 keV was found to be 1.47(6) x 10^{-4} per K-capture. Both the shape of the spectrum and its intensity relative to the ordinary, non-radiative capture rate, are compared to theoretical predictions. The best agreement is found for the recently developed model which employs the length gauge for the electromagnetic field.Comment: 7 pages, 6 figure

    Beta decay of 71,73Co; probing single particle states approaching doubly magic 78Ni

    Full text link
    Low-energy excited states in 71,73Ni populated via the {\beta} decay of 71,73Co were investigated in an experiment performed at the National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University (MSU). Detailed analysis led to the construction of level schemes of 71,73Ni, which are interpreted using systematics and analyzed using shell model calculations. The 5/2- states attributed to the the f5/2 orbital and positive parity 5/2+ and 7/2+ states from the g9/2 orbital have been identified in both 71,73Ni. In 71Ni the location of a 1/2- {\beta}-decaying isomer is proposed and limits are suggested as to the location of the isomer in 73Ni. The location of positive parity cluster states are also identified in 71,73Ni. Beta-delayed neutron branching ratios obtained from this data are given for both 71,73Co.Comment: Accepted for publication in PR

    First observation of 54Zn and its decay by two-proton emission

    Full text link
    The nucleus 54Zn has been observed for the first time in an experiment at the SISSI/LISE3 facility of GANIL in the quasi-fragmentation of a 58Ni beam at 74.5 MeV/nucleon in a natNi target. The fragments were analysed by means of the ALPHA-LISE3 separator and implanted in a silicon-strip detector where correlations in space and time between implantation and subsequent decay events allowed us to generate almost background free decay spectra for about 25 different nuclei at the same time. Eight 54Zn implantation events were observed. From the correlated decay events, the half-life of 54Zn is determined to be 3.2 +1.8/-0.8 ms. Seven of the eight implantations are followed by two-proton emission with a decay energy of 1.48(2) MeV. The decay energy and the partial half-life are compared to model predictions and allow for a test of these two-proton decay models.Comment: 4 pages, 4 figures, accepted for publication in PR
    corecore