19 research outputs found

    Binary homodyne detection for observing quadrature squeezing in satellite links

    Get PDF
    Optical satellite links open up new prospects for realizing quantum physical experiments over unprecedented length scales. We analyze and affirm the feasibility of detecting quantum squeezing in an optical mode with homodyne detection of only one bit resolution, as is found in satellites already in orbit. We show experimentally that, in combination with a coherent displacement, a binary homodyne detector can still detect quantum squeezing efficiently even under high loss. The sample overhead in comparison to nondiscretized homodyne detection is merely a factor of 3.3.Optical satellite links open up new prospects for realizing quantum physical experiments over unprecedented length scales. We analyze and affirm the feasibility of detecting quantum squeezing in an optical mode with homodyne detection of only one bit resolution, as is found in satellites already in orbit. We show experimentally that, in combination with a coherent displacement, a binary homodyne detector can still detect quantum squeezing efficiently even under high loss. The sample overhead in comparison to nondiscretized homodyne detection is merely a factor of 3.3

    Quantum polarization tomography of bright squeezed light

    Full text link
    We reconstruct the polarization sector of a bright polarization squeezed beam starting from a complete set of Stokes measurements. Given the symmetry that underlies the polarization structure of quantum fields, we use the unique SU(2) Wigner distribution to represent states. In the limit of localized and bright states, the Wigner function can be approximated by an inverse three-dimensional Radon transform. We compare this direct reconstruction with the results of a maximum likelihood estimation, finding an excellent agreement.Comment: 15 pages, 5 figures. Contribution to New Journal of Physics, Focus Issue on Quantum Tomography. Comments welcom

    Entanglement distribution and quantum discord

    Full text link
    Establishing entanglement between distant parties is one of the most important problems of quantum technology, since long-distance entanglement is an essential part of such fundamental tasks as quantum cryptography or quantum teleportation. In this lecture we review basic properties of entanglement and quantum discord, and discuss recent results on entanglement distribution and the role of quantum discord therein. We also review entanglement distribution with separable states, and discuss important problems which still remain open. One such open problem is a possible advantage of indirect entanglement distribution, when compared to direct distribution protocols.Comment: 7 pages, 2 figures, contribution to "Lectures on general quantum correlations and their applications", edited by Felipe Fanchini, Diogo Soares-Pinto, and Gerardo Adess

    Binary Homodyne Detection for Observing Quadrature Squeezing in Satellite Links

    No full text
    Optical satellite links open up new prospects for realizing quantum physical experiments over unprecedented length scales. We analyze and affirm the feasibility of detecting quantum squeezing in an optical mode with homodyne detection of only one bit resolution, as is found in satellites already in orbit. We show experimentally that, in combination with a coherent displacement, a binary homodyne detector can still detect quantum squeezing efficiently even under high loss. The sample overhead in comparison to non-discretized homodyne detection is merely a factor of 3.3

    Stabilization of transmittance fluctuations caused by beam wandering in continuous-variable quantum communication over free-space atmospheric channels

    No full text
    Transmittance fluctuations in turbulent atmospheric channels result in quadrature excess noise which limits applicability of continuous-variable quantum communication. Such fluctuations are commonly caused by beam wandering around the receiving aperture. We study the possibility to stabilize the fluctuations by expanding the beam, and test this channel stabilization in regard of continuous-variable entanglement sharing and quantum key distribution. We perform transmittance measurements of a real free-space atmospheric channel for different beam widths and show that the beam expansion reduces the fluctuations of the channel transmittance by the cost of an increased overall loss. We also theoretically study the possibility to share an entangled state or to establish secure quantum key distribution over the turbulent atmospheric channels with varying beam widths. We show the positive effect of channel stabilization by beam expansion on continuous-variable quantum communication as well as the necessity to optimize the method in order to maximize the secret key rate or the amount of shared entanglement. Being autonomous and not requiring adaptive control of the source and detectors based on characterization of beam wandering, the method of beam expansion can be also combined with other methods aiming at stabilizing the fluctuating free-space atmospheric channels

    Fading channel estimation for free-space continuous-variable secure quantum communication

    No full text
    We investigate estimation of fluctuating channels and its effect on security of continuous-variable quantum key distribution. We propose a novel estimation scheme which is based on the clusterization of the estimated transmittance data. We show that uncertainty about whether the transmittance is fixed or not results in a lower key rate. However, if the total number of measurements is large, one can obtain using our method a key rate similar to the non-fluctuating channel even for highly fluctuating channels. We also verify our theoretical assumptions using experimental data from an atmospheric quantum channel. Our method is therefore promising for secure quantum communication over strongly fluctuating turbulent atmospheric channels

    Polyoxometalate {W18O56XO6} clusters with embedded redox-active main-group templates as localized inner-cluster radicals

    No full text
    Non-mixed-valent reduced polyoxometalates, namely {W18O56XO6} Dawson-like clusters (X=IVII or TeVI) with a localized redox active template have been synthesized and redox properties compared with the pure tungsten control (that is, X=WVI). Upon one-electron reduction, the electron localizes on the main-group element, giving IVI or TeV, respectively. These clusters have potential as a new type of electron-transfer reagent

    Tuning of photocatalytic activity by creating a tridentate coordination sphere for palladium

    No full text
    The synthesis and characterisation of an asymmetric potential bridging ligand bmptpphz (bmptpphz = 2,17-bis(4-methoxyphenyl)tetrapyrido[3,2-a:2′,3′-c:3′′,2′′-h:2′′′,3′′′-j] phenazine) is presented. This ligand contains a 1,10-phenanthroline (phen) and a 2,9-disubstituted phen sphere and possesses a strong absorbance in the visible. Facile coordination of the phen sphere to a Ru(tbbpy)2 core leads to Ru(bmptpphz) ([(tbbpy)2Ru(bmptpphz)](PF6)2; tbbpy = 4,4′-di-tert-butyl-2,2′-bipyridine). UV-vis, emission, resonance Raman and theoretical investigations show that this complex possesses all properties associated with a Ru(tpphz) ([(tbbpy)2Ru(tpphz)](PF6)2; tpphz = tetrapyrido[3,2-a:2′,3′-c:3′′,2′′-h:2′′′,3′′′-j] phenazine) moiety and that the ligand based absorbances in the vis-part also populate an MLCT like state. The coordination of a Pd-core in the new 2,9-disubstituted phen sphere is possible, leading to a cyclometallation. The tridentate complexation leads to changes in the UV-vis and emission behaviour. Furthermore, the stability of the Pd-coordination is significantly enhanced if compared to the unsubstituted Ru(tpphz). Ru(bmptpphz)PdCl proved to be an active photocatalyst for H2 evolution, albeit with lower activity than the mother compound Ru(tpphz)PdCl2

    High-dimensional intracity quantum cryptography with structured photons

    No full text
    Quantum key distribution (QKD) promises information-theoretically secure communication and is already on the verge of commercialization. The next step will be to implement high-dimensional protocols in order to improve noise resistance and increase the data rate. Hitherto, no experimental verification of high-dimensional QKD in the singlephoton regime has been conducted outside of the laboratory. Here, we report the realization of such a single-photon QKD system in a turbulent free-space link of 0.3 km over the city of Ottawa, taking advantage of both the spin and orbital angular momentum photonic degrees of freedom. This combination of optical angular momenta allows us to create a 4-dimensional quantum state; wherein, using a high-dimensional BB84 protocol, a quantum bit error rate of 11% was attained with a corresponding secret key rate of 0.65 bits per sifted photon. In comparison, an error rate of 5% with a secret key rate of 0.43 bits per sifted photon is achieved for the case of 2-dimensional structured photons. We thus demonstrate that, even through moderate turbulence without active wavefront correction, high-dimensional photon states are advantageous for securely transmitting more information. This opens the way for intracity high-dimensional quantum communications under realistic conditions. (C) 2017 Optical Society of Americ
    corecore