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Binary homodyne detection for observing quadrature squeezing in satellite links
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Optical satellite links open up new prospects for realizing quantum physical experiments over unprecedented
length scales. We analyze and affirm the feasibility of detecting quantum squeezing in an optical mode with
homodyne detection of only one bit resolution, as is found in satellites already in orbit. We show experimentally
that, in combination with a coherent displacement, a binary homodyne detector can still detect quantum
squeezing efficiently even under high loss. The sample overhead in comparison to nondiscretized homodyne
detection is merely a factor of 3.3.
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I. INTRODUCTION

The laws of quantum mechanics have been validated by
numerous fundamental tests [1]. With the advent of optical
satellite links [2–6] it is now possible to also validate quantum
mechanics over vast distances and varying gravitational po-
tentials. The transmission and detection of nonclassical states
[7] such as quadrature squeezed states of the light field [8,9]
constitutes an important task in this regard. Squeezing is ef-
ficiently measured via homodyne detection [10], which is an
important measurement technique not only in optics, but also
in diverse physical architectures such as optomechanical res-
onators [11], superconducting qubits [12,13], spin ensembles
[14–17], and Bose-Einstein condensates [18]. Homodyne de-
tection yields continuously distributed quadrature projections,
which in practice are sometimes deliberately discretized. In
optical quantum information processing [19–23] this is ex-
emplified by quantum key distribution (QKD) protocols [24]
and by tests of Bell’s inequalities [25–29], which inherently
require one to discretize the homodyne outcomes to binary
values.

Optical homodyne detectors are ubiquitous in telecommu-
nications and can even be found on optical satellites already in
orbit. Such satellites are thus promising candidates for explor-
ing quantum technology and bringing fundamental tests of
quantum mechanics to space both rapidly and cost-effectively.
However, a very common use case of optical satellite links is
classical communication via binary phase-shift keying. Since
only the sign of the homodyne signal is relevant in this
case, the measurement data in the detectors get deliberately
projected into binary outcomes by signal processing [30,31].
The question then arises whether these detectors despite the
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strong technical constraint could be repurposed to detect,
e.g., squeezed light. The challenge is compounded by the
fact that satellite links can be tremendously lossy, which
implies severely reduced observable squeezing values when
quadrature-squeezed light is transmitted.

Extreme discretization into binary outcomes has been stud-
ied extensively for photon number measurements. Photon
“on-off” detection and the photon number parity measure-
ment were shown to allow for (near-) optimal applications
in quantum state discrimination [32–36] and quantum op-
tical metrology [37–42]. Discretized homodyne detection
schemes were used for witnessing single-photon entangle-
ment [43] and for super-resolved imaging with coherent
states [44].

In this work, we investigate fundamental limits of dis-
cretized homodyne measurements, particularly focusing on
the detection of quadrature squeezing. We consider the
extreme case of a binary homodyne detector that simply
distinguishes between positive and negative quadrature val-
ues, and we analyze its performance for the detection of
individual signals as well as for the consecutive detection
of multiple copies of the same state. We show that despite
the extreme constraint, binary homodyne detection (BHD)
can detect quadrature squeezing efficiently even under unfa-
vorable conditions like high loss when relying on ensemble
measurements. The ratio between the required number of
copies to obtain the same information about the observed
signal—measured in terms of the Bayesian a posteriori
probability—is merely 3.3 and is independent of the squeez-
ing parameter. We complement our theoretical analysis with
an experimental verification. To this end, we prepare and
detect both a coherent state and a weakly squeezed state via
BHD and compare the results to ideal, i.e., nondiscretized,
homodyne detection. We finally discuss the feasibility of de-
tecting squeezed states via BHD in satellite links.

II. BINARY HOMODYNE DETECTION

In the following, we introduce the binary homodyne ob-
servable and describe how its expectation value can be
controlled via a coherent displacement. We consider detecting
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FIG. 1. (a) Illustration of a coherent (blue) and a displaced
squeezed vacuum state (red) in phase space. (b) Binary homodyne
expectation value �+ of the displaced states and their difference
��+(α) (black) as a function of the displacement amplitude α.
(c) Ideal homodyne marginal distributions along the squeezed x
quadrature. (d) Sketch of the statistical BHD probability distribution
p(�+) obtained via single-copy and a multicopy detection.

a Gaussian state of a given quadrature uncertainty product, for
which the ellipticity [23], i.e., the ratio between the major and
minor semiaxis of its phase space distribution, has one of two
possible values. The described detection scheme is agnostic to
whether the Gaussian state is pure or mixed, i.e., whether the
candidate states corresponding to the two values of ellipticity
are squeezed vacuum states (states with quadrature uncer-
tainty product equaling one unit of vacuum noise) or squeezed
thermal states (states with quadrature uncertainty product in
excess of one unit of vacuum noise). We will thus assume the
former. Moreover, the overlap between any two states remains
unchanged when applying the same squeezing operation to
both. Therefore, we will assume that one of the candidate
states is a coherent state (the most classical state as expected
under the influence of high loss) and the other a squeezed state
with the same mean amplitude as the coherent state, and with
a real-valued squeezing parameter r [see Fig. 1(a)].

To identify the received signal via BHD, the signal is
first displaced in phase space, followed by a projection onto
quadrature semiaxes. This measurement is described by two
positive operator-valued measure (POVM) elements:

�̂+(α) =
∫ ∞

0
dx D̂†(α)|x〉〈x|D̂(α),

�̂−(α) = I − �̂+(α), (1)

where α is the displacement amplitude. Owing to the symme-
try along the quadrature axis, we can restrict the analysis to
real and positive displacement amplitudes.

III. DECISION RULE

The BHD outcome is a Bernoulli random variable Y (α)
over the sample space y ∈ {+,−}. The likelihood functions

FIG. 2. Average a posteriori (red) and success probability (blue)
for the detection of a single state, as well as the associated optimized
displacement amplitudes α (dashed lines and right axis labels).

for the two hypotheses ρ̂h ∈ {coh, sqz} are given by the con-
ditional probabilities PY |H (y| h) = Tr[�̂y ρ̂h]:

PY |H
(+
−| coh, α

) = 1

2

[
1 ± erf

(
α√
2

)]
,

PY |H
(+
−| sqz, α, r

) = 1

2

[
1 ± erf

(
α√

2 e−2 r

)]
. (2)

The average a posteriori probability is derived by up-
dating the priors (PH (coh) = PH (sqz) = 1/2) via Bayesian
inference,

〈PH |Y (α, r)〉 =
∑

y={+,−}

∑
h PY |H (y | h, α, r)2

2 PY (y)
, (3)

where PY (y) = (PY |H (y | coh) + PY |H (y | sqz))/2, and is opti-
mized over the displacement α.

For positive α, PY |H (+| sqz) > PY |H (+| coh), such that the
squeezed state can be associated with the outcome “+” and
the coherent state with the outcome “−.” Figure 1(b) shows
the BHD expectation value 〈�+(α)〉. Varying the displace-
ment amplitude allows maximizing the difference ��+ =
PY |H (+ | sqz) − PY |H (+ | coh) between the expectation values
and consequently allows for an optimized discrimination. The
maximal success probability for a single detection is

psucc = max
α

1 + �+(α)

2
. (4)

The achievable success and a posteriori probability, as
well as the associated optimized displacement amplitudes, are
shown in Fig. 2 as a function of the squeezing parameter. Note
that the displacement amplitudes optimizing the two parame-
ters coincide only in the limit of large squeezing amplitudes.
This emphasizes that a posteriori and success probability
are indeed distinct figures of merit. The a posteriori prob-
ability is maximized by optimizing the difference between
the conditional probabilities for any possible outcome, while
the optimal success probability requires maximizing ��+.
The optimal displacement in the latter case coincides with
the intersection point of the states’ marginal distributions as
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FIG. 3. (a) A posteriori probabilities for nondiscretized homodyne detection (black) and BHD as a function of the number of samples. The
displacement is optimized for maximizing the a posteriori probability. (b) Relative sample overhead required to obtain the same a posteriori
probability for the BHD measurement as obtained by nondiscretized homodyne detection. (c) Probability for successful state discrimination as
a function of the number of samples and for different displacement strategies. (d) Comparison of the optimized displacement amplitudes α for
different strategies.

depicted in Fig. 1(c):

α(opt )(r) =
√

2r

e2r − 1
. (5)

In the limit of an infinitely squeezed state the optimized
displacement asymptotically approaches zero limr→∞ α(r) =
0, but the success probability is upper bounded by psucc � 3

4 ,
as at least half of the coherent state has support on the posi-
tive semiaxis. Similarly, the a posteriori probability is upper
bounded by 〈PH |Y (α, r)〉 � 2

3 .

IV. MULTICOPY DETECTION

To verify the properties of the quantum states after prop-
agation it is sufficient to perform ensemble measurements.
Gathering statistics over multiple measurements of identically
prepared states allows reducing the overlap of the signals
probability distributions [see Fig. 1(d)] and consequently re-
ducing the error probability, defined as 1 − psucc. Let −→y =
(y1, y2, . . . , yN ) denote the outcome of a multicopy BHD mea-
surement.

The probability to detect k ∈ {0, 1, . . . , N}, positive
quadrature projections from N measurements is given by the
Binomial probability density function

P(N )
Y |H (k|h, α, r)

=
(

N

k

)
PY |H (+|h, α, r )k [1 − PY |H (+|h, α, r )]N−k, (6)

which approaches a quasicontinuous Gaussian distribution for
a large number of samples.

The a posteriori probability for the signal hypothesis h ∈
{coh, sqz} follows from the conditional single-copy probabil-
ities in Eqs. (2) and (3) via Bayesian inference as

P(N )

H|−→Y (h|−→y ) =
∏N

i=1 PY |H (yi|h )∑
h

∏N
j=1 PY |H (y j |h )

. (7)

The maximal a posteriori probability is obtained by maxi-
mizing over the displacement parameter α and is given by

〈
P(N )

H|−→Y
〉 = max

α

N∑
k=0

∑
h

[
P(N )

Y |H (k | h, α, r)
]2

2
∑

h′ P(N )
Y |H (k | h′, α, r)

. (8)

This quantity is compared to a nondiscretized homodyne
detector in Fig. 3(a) for the example of a squeezing param-
eter r = 0.085, i.e., 0.369 dB below the shot-noise level.
Naturally, the outcomes of the BHD yield less information
about the detected states than ideal homodyne detection. (For
details about the calculation of the a posteriori and success
probability for ideal homodyne detection see Appendix A.)
Consequently, a larger number of samples must be collected
on average to achieve the same a posteriori probability. The
required relative sample size is depicted in Fig. 3(b). Apart
from the region of a posteriori probabilities close to 0.5,
where statistical effects originating from the discreteness of
the Binomial distribution are most pronounced, the ratio is
essentially constant and has a value of merely 3.3. A separate
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FIG. 4. (a) Outline of the experimental setup. (b) Measured
marginal distributions of the coherent state (purple) and of the
squeezed state (red) with r = 0.085, 0.369 dB. An excerpt of dis-
placed homodyne samples for both states is displayed in the lower
section. (c) Statistical distribution of the quadrature-parity observ-
able as a function of the observed number of samples. The solid lines
indicate the average quadrature parity.

analysis shows that this ratio is independent of the squeez-
ing parameter r. We stress that this value, as it applies to
the extreme discretization into binary outcomes, is indeed an
upper bound for the required sample overhead of arbitrarily
discretized homodyne detection such as occurring in realistic
analog-to-digital (AD) converters.

The optimal success probability psucc in multicopy detec-
tion is obtained by generalizing Eq. (4) such that the squeezed
state is hypothesized whenever k equals or exceeds a threshold
value τ , followed by maximizing over τ and α:

P(N )
succ(k) = max

α,τ

P(N )(k � τ | coh, α) + P(N )(k > τ | sqz, α, r)

2
.

(9)
Figure 3(c) compares the optimized success probability of
BHD to that of ideal homodyne detection as well as to the
success probability corresponding to BHD, where a displace-
ment that maximizes the a posteriori probability is applied.
Maximizing the a posteriori probability is equivalent to mini-
mizing the error probability only in the limit of a large number
of samples. This is underpinned in Fig. 3(d), where the distinct
optimized displacements are illustrated. The fluctuations in
the displacement maximizing the success probability originate
from the discreteness of the underlying Binomial distribution.
A more detailed discussion is given in Appendix B.

V. EXPERIMENTAL VALIDATION

We experimentally prepared a vacuum state and a weakly
squeezed vacuum state (r = 0.085; 0.369 dB) using the fiber-
based polarization squeezing setup [45] outlined in Fig. 4(a).
Pulses from a shot-noise-limited laser centered at 1560 nm are
distributed equally on the principal axes of a 13-m-long po-
larization maintaining fiber and get individually squeezed via
the Kerr nonlinearity [46]. The emerging pulses are locked to
circular polarization such that the mean value of the squeezed
polarization state lies along the S3 direction on the Poincaré

FIG. 5. Statistical distributions of the experimentally obtained a
posteriori probabilities as a function of the number of detected sam-
ples N . For improved contrast, the maximal a posteriori probability
for each value of N has been normalized to unity. The dashed white
curve shows the average value for each number of detections.

sphere. Homodyne detection of the quantum Stokes variables
within the dark S1-S2 plane is then equivalent to conventional
homodyne detection in the canonical x-p phase space. A de-
tailed description of the setup and the theoretical background
can be found in Ref. [47]. In total, we acquired 2 × 108

homodyne samples {xk} of identically prepared copies of the
vacuum and the squeezed state projected along the squeezed
quadrature. The detector resolution is 16 bit, such that the
quadrature was sampled quasicontinuously and the data pro-
vide accurate histograms of the actual marginal distribution as
shown in Fig. 4(b). Applying a coherent displacement solely
adds a classical offset amplitude to the quantum field opera-
tor, â 	→ â + α, and consequently to the detected quadrature,
X̂ 	→ X̂ + Re(α), where X̂ = (â + â†)/2. Therefore, given
the quasicontinuous homodyne samples {xk}, the coherent
displacement and the subsequent projection onto the quadra-
ture semiaxes yk ∈ {+,−} can faithfully be performed after
detection via xk 	→ yk = 1

2 [sgn(xk + α) + 1].
The statistical distribution of the BHD samples for the

measured coherent (purple) and squeezed state (red) are
shown in Fig. 4(c) for a displacement amplitude α = 1.501,
which maximizes the a posteriori probability. The distribu-
tions are largely overlapping for a small number of samples
but eventually become distinguishable with increasing sample
size.

Figure 5 shows the experimentally obtained statistical
distribution of the a posteriori probabilities for BHD as a
function of the number of samples. The discreteness of the
sample distributions yields a rich structure which is consistent
with numerical simulations. For a large number of samples
the a posteriori probability converges to unity as could be
expected. The dashed white curve shows the average a pos-
teriori probability, which also is in excellent agreement with
theoretical predictions.

VI. OBSERVING SQUEEZING IN OPTICAL
SATELLITE LINKS

Optical communication satellites are currently optimized
for the detection of binary encoded classical signals. This en-
compasses projecting the signals into binary outcomes already
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in the detection process, which thus prevents an evaluation
of the continuous-variable (CV) quantum information. Our
results on BHD pave the way to nevertheless detect quadrature
squeezing in such scenarios. Let us investigate how the size of
the measurement data required to faithfully detect a squeezed
state scales as a function of loss in the transmission channel
(see Appendix C for details). An up-link from a ground-based
sender to a low Earth orbit (LEO) satellite receiver (≈600 km
distance) with transmitter and receiver apertures of about
30 cm diameter is subject to transmission losses of about
40–45 dB [48]. These losses includes atmospheric turbulence,
diffraction, and pointing error. Let us further assume a moder-
ate squeezing parameter of r = 0.69, corresponding to 6 dB
of squeezing below the shot-noise level, and let us bound
the average error probability to at most 10−2. To satisfy this
realistic scenario for 40 dB of loss, about 3 × 109 BHD sam-
ples are required, while 45 dB of loss would require 3 × 1010

samples. We stress again that this is of the same order of mag-
nitude as the number of samples required by a nondiscretized
homodyne detector, differing merely by a constant factor of
3.3. Optical homodyne detection and quadrature squeezing
have been demonstrated with GHz bandwidths [49,50], such
that the acquisition of the required number of samples can be
achieved within a few seconds, i.e., well within the typical link
time for a single flyover of a LEO satellite (≈300 sec). We
thus emphasize that it is, in principle, feasible with technology
already in orbit to detect squeezing in optical satellite links.

Though our results establish that quantum squeezing can
be detected using BHD even in the presence of high losses,
it must be mentioned that useful quantum communication
protocols involving squeezed states such as the protocols of
Refs. [51,52] for CV QKD typically still require fine-grained
homodyne detection to generate the raw keys. Moreover, it
is well known that coherent states, which are much easier
to prepare than squeezed states, are sufficient to perform CV
QKD [53–55]. Coherent state protocols have been shown to be
typically more tolerant to losses compared to squeezed state
protocols (while the latter are interestingly more robust to
excess noise than the former) [56,57]. Yet, even coherent state
CV QKD protocols require fine-grained homodyne detection.
Therefore, the existing optical satellite infrastructure is not
equipped to support useful applications such as CV QKD.
It is thus imperative to upgrade satellite equipment to enable
high-rate CV quantum communications [58].

VII. CONCLUSIONS

Homodyne detection is a powerful quantum measurement
even under the constraint of severe discretization. Our work
underlines this by showing that a homodyne detector with a
resolution of only one bit can still accomplish the quintessen-
tial task of detecting squeezed light efficiently. We derived
the optimal phase space displacements for maximizing the
success probability and the a posteriori probability, and found
that a binary homodyne detector can distinguish two Gaus-
sian states of different squeezing parameter with the same a
posteriori probabilities as its nondiscretized counterpart by
detecting a sample set merely a factor of 3.3 larger. Our
work opens prospects for detecting quantum squeezing in

optical satellite links. A possible early experimental demon-
stration might involve using (binary) homodyne detection
on the satellite and an Earth-to-satellite communication link
with a squeezer at the ground station that includes the nec-
essary techniques for phase front precompensation and phase
locking.
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APPENDIX A: A POSTERIORI PROBABILITIES FOR
NONDISCRETIZED HOMODYNE DETECTION

The a posteriori probability for ideal, i.e., nondiscretized,
homodyne detection is derived from the statistical distribu-
tion of the measured quadrature variance σ 2

N = ∑N
k=1 x2

k/N ,
where xk are the continuous homodyne samples. The ob-
served quadrature variance follows a χ2

N distribution, which
is scaled such that the expectation value coincides with the
mean quadrature variance of the detected state.

FIG. 6. Comparison of the statistical distributions for N = 21
samples and for different displacement amplitudes. (a) α = 1.8: opt.
displacement just before the discontinuity at N = 20. (b) α = 1.42:
opt. displacement just after the discontinuity at N = 21.
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FIG. 7. Average minimum error probability as a function of the
number of measured samples for the detection of a beam of light
initially squeezed 6 dB below the shot-noise level at the output of a
lossy channel of (a) 40 dB loss and (b) 45 dB loss.

Given the observation of the quadrature variance σ 2
N , the a

posteriori probability for the hypothesis h ∈ {coh, sqz} is

PH |Y
(
h

∣∣ σ 2
N

) = PY |H
(
σ 2

N

∣∣ h
)

PY |H
(
σ 2

N

∣∣ coh
) + PY |H

(
σ 2

N

∣∣ sqz
) . (A1)

The average a posteriori probability is obtained via integra-
tion over the scaled χ2

N probability distribution for observing
the quadrature variance σ 2

N :

〈PH 〉 = 1

2

∑
h

∫ ∞

0
PY |H

(
σ 2

N | h
) · PH |Y

(
h

∣∣ σ 2
N

)
dσ 2

N . (A2)

In the state discrimination scenario, the state with the
higher a posteriori probability 〈PH (h)〉 is hypothesized:

PH |Y
(
sqz

∣∣σ 2
N

)H = sqz
>

<

H = coh

PH |Y
(
coh

∣∣σ 2
N

)
. (A3)

APPENDIX B: DISCONTINUOUS OPTIMAL
DISPLACEMENT AMPLITUDE IN MAXIMIZING THE

SUCCESS PROBABILITY

The Binomial probability density functions [see Eq. (6)]
for the projection of 21 copies of the coherent state and the
squeezed state onto the positive quadrature semiaxis �+ are
shown for different displacement amplitudes α in Fig. 6. The
blue-shaded areas indicates the cumulative quadrature projec-
tions that lead to the hypothesis for the coherent state, while
outcomes in the red-shaded area are identified as the squeezed
state. The distribution in Fig. 6(a) is obtained with the dis-
placement amplitude maximizing the success probability for
N = 20 copies, α = 1.8, i.e., just before the discontinu-
ity. In this configuration, the measurement hypothesizes the
squeezed state only if all (k = 21) detected states are projected
onto a positive quadrature value. Figure 6(b) shows the distri-
bution at the actual optimal displacement amplitude α = 1.42.
The state is identified as the squeezed state if k = 20 or k =
21 detections had a positive quadrature projection. The dis-
continuities in the optimized displacement curve result from
discrete shifts in the decision threshold combined with the
maximization of the likelihoods of the coherent and squeezed
state distributions on their respective identification domains.
For a large number of copies N the range of possible out-
comes approaches a quasicontinuous Gaussian distribution,
and the optimized displacement approaches an asymptotically
optimal value.

APPENDIX C: REQUIRED SAMPLES SIZE FOR
SQUEEZING DETECTION IN LEO SATELLITE LINKS

Figure 7 depicts the error probability for the unbiased de-
tection of squeezed states (6 dB, r = 0.69) emerging from a
lossy channel of 40 dB and 45 dB, respectively [59]. On an
absolute scale, the error probability remains nearly constant
up to a certain number of detected samples, but thereafter
drops steeply with increasing number of samples. The plot
shows that squeezing can be detected with an average er-
ror probability no greater than 10−2 by measuring 3 × 109

(40 dB) samples and 3 × 1010 (45 dB) samples, respectively.
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