121 research outputs found
Recommended from our members
Carbon and nitrogen isotopic ratios of urine and faeces as novel nutritional biomarkers of meat and fish intake
Purpose
Meat and fish consumption are associated with changes in the risk of chronic diseases. Intake is mainly assessed using self-reporting, as no true quantitative nutritional biomarker is available. The measurement of plasma fatty acids, often used as an alternative, is expensive and time-consuming. As meat and fish differ in their stable isotope ratios, δ13C and δ15N have been proposed as biomarkers. However, they have never been investigated in controlled human dietary intervention studies.
Objective
In a short-term feeding study, we investigated the suitability of δ13C and δ15N in blood, urine and faeces as biomarkers of meat and fish intake.
Methods
The dietary intervention study (n = 14) followed a randomised cross-over design with three eight-day dietary periods (meat, fish and half-meat–half-fish). In addition, 4 participants completed a vegetarian control period. At the end of each period, 24-h urine, fasting venous blood and faeces were collected and their δ13C and δ15N analysed.
Results
There was a significant difference between diets in isotope ratios in faeces and urine samples, but not in blood samples (Kruskal–Wallis test, p < 0.0001). In pairwise comparisons, δ13C and δ15N were significantly higher in urine and faecal samples following a fish diet when compared with all other diets, and significantly lower following a vegetarian diet. There was no significant difference in isotope ratio between meat and half-meat–half-fish diets for blood, urine or faecal samples.
Conclusions
The results of this study show that urinary and faecal δ13C and δ15N are suitable candidate biomarkers for short-term meat and fish intake
Stable isotope analysis of soft tissues from mummified human remains
Mummies are faunal remains that include the preservation of soft tissues, such as skin, muscle, nails and hair as well as bone. These soft tissues are generally rich in collagen or keratin proteins and thus provide potentially suitable material for stable isotope studies. When preserved, such tissues can provide high-resolution information about the diet and migration of humans in the weeks and months before death. Hair, nails and soft tissue provide short-term (months) dietary information in contrast to bone which will represent 5–20 years of dietary history prior to death, depending on the bone analysed. Such high-resolution data can answer questions on the season of death, seasonality of food resources and the movement and relocation of people. This review begins with a summary of the most common isotope techniques (13C/12C, 15N/14N) and the tissues concerned, followed by an analysis of the key questions that have been addressed using these methods. Until relatively recently work has focused on bulk protein isotope analysis, but in the last 10 years this has been expanded to on-line compound-specific amino acid analysis and to a wider variety of isotopes (18O/16O, 2H/1H and 34S/32S) and these applications are also discussed
Dietary Heterogeneity among Western Industrialized Countries Reflected in the Stable Isotope Ratios of Human Hair
Although the globalization of food production is often assumed to result in a homogenization of consumption patterns with a convergence towards a Western style diet, the resources used to make global food products may still be locally produced (glocalization). Stable isotope ratios of human hair can quantify the extent to which residents of industrialized nations have converged on a standardized diet or whether there is persistent heterogeneity and glocalization among countries as a result of different dietary patterns and the use of local food products. Here we report isotopic differences among carbon, nitrogen and sulfur isotope ratios of human hair collected in thirteen Western European countries and in the USA. European hair samples had significantly lower δ13C values (−22.7 to −18.3‰), and significantly higher δ15N (7.8 to 10.3‰) and δ34S (4.8 to 8.3‰) values than samples from the USA (δ13C: −21.9 to −15.0‰, δ15N: 6.7 to 9.9‰, δ34S: −1.2 to 9.9‰). Within Europe, we detected differences in hair δ13C and δ34S values among countries and covariation of isotope ratios with latitude and longitude. This geographic structuring of isotopic data suggests heterogeneity in the food resources used by citizens of industrialized nations and supports the presence of different dietary patterns within Western Europe despite globalization trends. Here we showed the potential of stable isotope analysis as a population-wide tool for dietary screening, particularly as a complement of dietary surveys, that can provide additional information on assimilated macronutrients and independent verification of data obtained by those self-reporting instruments
Recommended from our members
Serum carbon and nitrogen stable isotopes as potential biomarkers of dietary intake and their relation with incident type 2 diabetes: the EPIC-Norfolk study.
BACKGROUND: Stable-isotope ratios of carbon (¹³C/¹²C, expressed as δ¹³C) and nitrogen (¹⁵N/¹⁴N, or δ¹⁵N) have been proposed as potential nutritional biomarkers to distinguish between meat, fish, and plant-based foods. OBJECTIVE: The objective was to investigate dietary correlates of δ¹³C and δ¹⁵N and examine the association of these biomarkers with incident type 2 diabetes in a prospective study. DESIGN: Serum δ¹³C and δ¹⁵N (‰) were measured by using isotope ratio mass spectrometry in a case-cohort study (n = 476 diabetes cases; n = 718 subcohort) nested within the European Prospective Investigation into Cancer and Nutrition (EPIC)-Norfolk population-based cohort. We examined dietary (food-frequency questionnaire) correlates of δ¹³C and δ¹⁵N in the subcohort. HRs and 95% CIs were estimated by using Prentice-weighted Cox regression. RESULTS: Mean (±SD) δ¹³C and δ¹⁵N were -22.8 ± 0.4‰ and 10.2 ± 0.4‰, respectively, and δ¹³C (r = 0.22) and δ¹⁵N (r = 0.20) were positively correlated (P < 0.001) with fish protein intake. Animal protein was not correlated with δ¹³C but was significantly correlated with δ¹⁵N (dairy protein: r = 0.11; meat protein: r = 0.09; terrestrial animal protein: r = 0.12, P ≤ 0.013). δ¹³C was inversely associated with diabetes in adjusted analyses (HR per tertile: 0.74; 95% CI: 0.65, 0.83; P-trend < 0.001], whereas δ¹⁵N was positively associated (HR: 1.23; 95% CI: 1.09, 1.38; P-trend = 0.001). CONCLUSIONS: The isotope ratios δ¹³C and δ¹⁵N may both serve as potential biomarkers of fish protein intake, whereas only δ¹⁵N may reflect broader animal-source protein intake in a European population. The inverse association of δ¹³C but a positive association of δ¹⁵N with incident diabetes should be interpreted in the light of knowledge of dietary intake and may assist in identifying dietary components that are associated with health risks and benefits.The EPIC-Norfolk study is supported by program grants from the Medical Research Council UK and Cancer Research UK. MRC Epidemiology Unit core support is acknowledged (MC_UU_12015/1 and MC_UU_12015/5). TCO and CKK were supported by the Wellcome Trust (grant no. 074229/Z/04/Z).This version is the published accepted manuscript, distributed under a Creative Commons Attribution License 2.0. It can also be found on the publisher's website at: http://ajcn.nutrition.org/content/early/2014/07/02/ajcn.113.068577.abstrac
Borrelia Burgdorferi Induces a Type I Interferon Response During Early Stages of Disseminated Infection in Mice
BACKGROUND: Lyme borrelia genotypes differ in their capacity to cause disseminated disease. Gene array analysis was employed to profile the host transcriptome induced by Borrelia burgdorferi strains with different capacities for causing disseminated disease in the blood of C3H/HeJ mice during early infection.
RESULTS: B. burgdorferi B515, a clinical isolate that causes disseminated infection in mice, differentially regulated 236 transcripts (P \u3c 0.05 by ANOVA, with fold change of at least 2). The 216 significantly induced transcripts included interferon (IFN)-responsive genes and genes involved in immunity and inflammation. In contrast, B. burgdorferi B331, a clinical isolate that causes transient skin infection but does not disseminate in C3H/HeJ mice, stimulated changes in only a few genes (1 induced, 4 repressed). Transcriptional regulation of type I IFN and IFN-related genes was measured by quantitative RT-PCR in mouse skin biopsies collected from the site of infection 24 h after inoculation with B. burgdorferi. The mean values for transcripts of Ifnb, Cxcl10, Gbp1, Ifit1, Ifit3, Irf7, Mx1, and Stat2 were found to be significantly increased in B. burgdorferi strain B515-infected mice relative to the control group. In contrast, transcription of these genes was not significantly changed in response to B. burgdorferi strain B331 or B31-4, a mutant that is unable to disseminate.
CONCLUSIONS: These results establish a positive association between the disseminating capacity of B. burgdorferi and early type I IFN induction in a murine model of Lyme disease
Microarray Analyses of Inflammation Response of Human Dermal Fibroblasts to Different Strains of Borrelia burgdorferi Sensu Stricto
In Lyme borreliosis, the skin is the key site of bacterial inoculation by the infected tick, and of cutaneous manifestations, erythema migrans and acrodermatitis chronica atrophicans. We explored the role of fibroblasts, the resident cells of the dermis, in the development of the disease. Using microarray experiments, we compared the inflammation of fibroblasts induced by three strains of Borrelia burgdorferi sensu stricto isolated from different environments and stages of Lyme disease: N40 (tick), Pbre (erythema migrans) and 1408 (acrodermatitis chronica atrophicans). The three strains exhibited a similar profile of inflammation with strong induction of chemokines (CXCL1 and IL-8) and IL-6 cytokine mainly involved in the chemoattraction of immune cells. Molecules such as TNF-alpha and NF-κB factors, metalloproteinases (MMP-1, -3 and -12) and superoxide dismutase (SOD2), also described in inflammatory and cellular events, were up-regulated. In addition, we showed that tick salivary gland extracts induce a cytotoxic effect on fibroblasts and that OspC, essential in the transmission of Borrelia to the vertebrate host, was not responsible for the secretion of inflammatory molecules by fibroblasts. Tick saliva components could facilitate the early transmission of the disease to the site of injury creating a feeding pit. Later in the development of the disease, Borrelia would intensively multiply in the skin and further disseminate to distant organs
The Nature of the Dietary Protein Impacts the Tissue-to-Diet 15N Discrimination Factors in Laboratory Rats
Due to the existence of isotope effects on some metabolic pathways of amino acid and protein metabolism, animal tissues are 15N-enriched relative to their dietary nitrogen sources and this 15N enrichment varies among different tissues and metabolic pools. The magnitude of the tissue-to-diet discrimination (Δ15N) has also been shown to depend on dietary factors. Since dietary protein sources affect amino acid and protein metabolism, we hypothesized that they would impact this discrimination factor, with selective effects at the tissue level. To test this hypothesis, we investigated in rats the influence of a milk or soy protein-based diet on Δ15N in various nitrogen fractions (urea, protein and non-protein fractions) of blood and tissues, focusing on visceral tissues. Regardless of the diet, the different protein fractions of blood and tissues were generally 15N-enriched relative to their non-protein fraction and to the diet (Δ15N>0), with large variations in the Δ15N between tissue proteins. Δ15N values were markedly lower in tissue proteins of rats fed milk proteins compared to those fed soy proteins, in all sampled tissues except in the intestine, and the amplitude of Δ15N differences between diets differed between tissues. Both between-tissue and between-diet Δ15N differences are probably related to modulations of the relative orientation of dietary and endogenous amino acids in the different metabolic pathways. More specifically, the smaller Δ15N values observed in tissue proteins with milk than soy dietary protein may be due to a slightly more direct channeling of dietary amino acids for tissue protein renewal and to a lower recycling of amino acids through fractionating pathways. In conclusion, the present data indicate that natural Δ15N of tissue are sensitive markers of the specific subtle regional modifications of the protein and amino acid metabolism induced by the protein dietary source
Human Integrin α3β1 Regulates TLR2 Recognition of Lipopeptides from Endosomal Compartments
Toll-like receptor (TLR)-2/TLR1 heterodimers recognize bacterial lipopeptides and initiate the production of inflammatory mediators. Adaptors and co-receptors that mediate this process, as well as the mechanisms by which these adaptors and co-receptors function, are still being discovered.Using shRNA, blocking antibodies, and fluorescent microscopy, we show that U937 macrophage responses to the TLR2/1 ligand, Pam(3)CSK(4), are dependent upon an integrin, α(3)β(1). The mechanism for integrin α(3)β(1) involvement in TLR2/1 signaling is through its role in endocytosis of lipopeptides. Using inhibitors of endosomal acidification/maturation and physical tethering of the ligand, we show that the endocytosis of Pam(3)CSK(4) is necessary for the complete TLR2/1-mediated pro-inflammatory cytokine response. We also show that TLR2/1 signaling from the endosome results in the induction of different inflammatory mediators than TLR2/1 signaling from the plasma membrane.Here we identify integrin α(3)β(1) as a novel regulator for the recognition of bacterial lipopeptides. We demonstrate that induction of a specific subset of cytokines is dependent upon integrin α(3)β(1)-mediated endocytosis of the ligand. In addition, we address an ongoing controversy regarding endosomal recognition of bacterial lipopeptides by demonstrating that TLR2/1 signals from within endosomal compartments as well as the plasma membrane, and that downstream responses may differ depending upon receptor localization. We propose that the regulation of endosomal TLR2/1 signaling by integrin α(3)β(1) serves as a mechanism for modulating inflammatory responses
Early Production of IL-22 but Not IL-17 by Peripheral Blood Mononuclear Cells Exposed to live Borrelia burgdorferi: The Role of Monocytes and Interleukin-1
If insufficiently treated, Lyme borreliosis can evolve into an inflammatory disorder affecting skin, joints, and the CNS. Early innate immunity may determine host responses targeting infection. Thus, we sought to characterize the immediate cytokine storm associated with exposure of PBMC to moderate levels of live Borrelia burgdorferi. Since Th17 cytokines are connected to host defense against extracellular bacteria, we focused on interleukin (IL)-17 and IL-22. Here, we report that, despite induction of inflammatory cytokines including IL-23, IL-17 remained barely detectable in response to B. burgdorferi. In contrast, T cell-dependent expression of IL-22 became evident within 10 h of exposure to the spirochetes. This dichotomy was unrelated to interferon-γ but to a large part dependent on caspase-1 and IL-1 bioactivity derived from monocytes. In fact, IL-1β as a single stimulus induced IL-22 but not IL-17. Neutrophils display antibacterial activity against B. burgdorferi, particularly when opsonized by antibodies. Since neutrophilic inflammation, indicative of IL-17 bioactivity, is scarcely observed in Erythema migrans, a manifestation of skin inflammation after infection, protective and antibacterial properties of IL-22 may close this gap and serve essential functions in the initial phase of spirochete infection
- …