219 research outputs found

    PGH1, the Precursor for the Anti-Inflammatory Prostaglandins of the 1-series, Is a Potent Activator of the Pro-Inflammatory Receptor CRTH2/DP2

    Get PDF
    Prostaglandin H1 (PGH1) is the cyclo-oxygenase metabolite of dihomo-Ξ³-linolenic acid (DGLA) and the precursor for the 1-series of prostaglandins which are often viewed as β€œanti-inflammatory”. Herein we present evidence that PGH1 is a potent activator of the pro-inflammatory PGD2 receptor CRTH2, an attractive therapeutic target to treat allergic diseases such as asthma and atopic dermatitis. Non-invasive, real time dynamic mass redistribution analysis of living human CRTH2 transfectants and Ca2+ flux studies reveal that PGH1 activates CRTH2 as PGH2, PGD2 or PGD1 do. The PGH1 precursor DGLA and the other PGH1 metabolites did not display such effect. PGH1 specifically internalizes CRTH2 in stable CRTH2 transfectants as assessed by antibody feeding assays. Physiological relevance of CRTH2 ligation by PGH1 is demonstrated in several primary human hematopoietic lineages, which endogenously express CRTH2: PGH1 mediates migration of and Ca2+ flux in Th2 lymphocytes, shape change of eosinophils, and their adhesion to human pulmonary microvascular endothelial cells under physiological flow conditions. All these effects are abrogated in the presence of the CRTH2 specific antagonist TM30089. Together, our results identify PGH1 as an important lipid intermediate and novel CRTH2 agonist which may trigger CRTH2 activation in vivo in the absence of functional prostaglandin D synthase

    Profiling of Differentially Expressed Genes Using Suppression Subtractive Hybridization in an Equine Model of Chronic Asthma

    Get PDF
    Background :\ud Gene expression analyses are used to investigate signaling pathways involved in diseases. In asthma, they have been primarily derived from the analysis of bronchial biopsies harvested from mild to moderate asthmatic subjects and controls. Due to ethical considerations, there is currently limited information on the transcriptome profile of the peripheral lung tissues in asthma.\ud \ud Objective :\ud To identify genes contributing to chronic inflammation and remodeling in the peripheral lung tissue of horses with heaves, a naturally occurring asthma-like condition.\ud \ud Methods :\ud Eleven adult horses (6 heaves-affected and 5 controls) were studied while horses with heaves were in clinical remission (Pasture), and during disease exacerbation induced by a 30-day natural antigen challenge during stabling (Challenge). Large peripheral lung biopsies were obtained by thoracoscopy at both time points. Using suppression subtractive hybridization (SSH), lung cDNAs of controls (Pasture and Challenge) and asymptomatic heaves-affected horses (Pasture) were subtracted from cDNAs of horses with heaves in clinical exacerbation (Challenge). The differential expression of selected genes of interest was confirmed using quantitative PCR assay.\ud \ud Results :\ud Horses with heaves, but not controls, developed airway obstruction when challenged. Nine hundred and fifty cDNA clones isolated from the subtracted library were screened by dot blot array and 224 of those showing the most marked expression differences were sequenced. The gene expression pattern was confirmed by quantitative PCR in 15 of 22 selected genes. Novel genes and genes with an already defined function in asthma were identified in the subtracted cDNA library. Genes of particular interest associated with asthmatic airway inflammation and remodeling included those related to PPP3CB/NFAT, RhoA, and LTB4/GPR44 signaling pathways.\ud \ud Conclusions :\ud Pathways representing new possible targets for anti-inflammatory and anti-remodeling therapies for asthma were identified. The findings of genes previously associated with asthma validate this equine model for gene expression studies

    Loss of Mitogen-Activated Protein Kinase Kinase Kinase 4 (MAP3K4) Reveals a Requirement for MAPK Signalling in Mouse Sex Determination

    Get PDF
    The boygirl (byg) mouse mutant reveals that MAP3K4-mediated signaling is necessary for normal SRY expression and testis specification in the developing mouse gonad

    Resolution of inflammation: a new therapeutic frontier

    Get PDF
    Dysregulated inflammation is a central pathological process in diverse disease states. Traditionally, therapeutic approaches have sought to modulate the pro- or anti-inflammatory limbs of inflammation, with mixed success. However, insight into the pathways by which inflammation is resolved has highlighted novel opportunities to pharmacologically manipulate these processes β€” a strategy that might represent a complementary (and perhaps even superior) therapeutic approach. This Review discusses the state of the art in the biology of resolution of inflammation, highlighting the opportunities and challenges for translational research in this field

    Innate lymphocyte cells in asthma phenotypes

    Get PDF
    T helper type 2 (TH2) cells were previously thought to be the main initiating effector cell type in asthma; however, exaggerated TH2 cell activities alone were insufficient to explain all aspects of asthma. Asthma is a heterogeneous syndrome comprising different phenotypes that are characterized by their different clinical features, treatment responses, and inflammation patterns. The most-studied subgroups of asthma include TH2-associated early-onset allergic asthma, late-onset persistent eosinophilic asthma, virus-induced asthma, obesity-related asthma, and neutrophilic asthma. The recent discovery of human innate lymphoid cells capable of rapidly producing large amounts of cytokines upon activation and the mouse data pointing to an essential role for these cells in asthma models have emphasized the important role of the innate immune system in asthma and have provided a new means of better understanding asthma mechanisms and differentiating its phenotypes

    Interaction between prostaglandin D2 and chemoattractant receptor-homologous molecule expressed on Th2 cells mediates cytokine production by Th2 lymphocytes in response to activated mast cells

    No full text
    The mechanisms by which immunologically activated mast cells stimulate the production of proinflammatory cytokines by T helper type 2 (Th2) lymphocytes were investigated in a human cell culture system. Supernatants collected from cord blood-derived mast cells after treatment with immunoglobulin E (IgE)/anti-IgE contained an activity that stimulated the production of interleukin (IL)-4, IL-5 and IL-13 (both mRNA and protein) by Th2 lymphocytes. This activity was not detected in supernatants from unactivated mast cells and its production was inhibited by treatment of activated mast cells with the cyclo-oxygenase inhibitor diclofenac. The concentration of diclofenac used inhibited completely the production of prostaglandin D2 (PGD2) but did not inhibit the release of histamine or leukotriene C4. The effect of supernatants from activated mast cells was mimicked by exogenous PGD2 at concentrations similar to those detected in the cultures of activated mast cells, and addition of exogenous PGD2 to supernatants from diclofenac-treated mast cells restored their ability to stimulate Th2 cytokine production. The ability of the mast cell supernatants to stimulate production of Th2 cytokines was not affected by addition of diclofenac to the Th2 cells directly, indicating that the production, but not the action, of the factor was sensitive to diclofenac treatment. Inhibition of chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2) abolished the effect of the mast cell supernatants on Th2 cytokine production. These data indicate that mast cells have the ability to stimulate Th2 cells to elaborate cytokines independently of T cell receptor activation or co-stimulation and this response is mediated by PGD2 acting upon CRTH2 expressed by Th2 cells
    • …
    corecore