256 research outputs found

    Opening the Black Box of Family-Based Treatments: an artificial intelligence Framework to Examine therapeutic alliance and therapist Empathy

    Get PDF
    The evidence-based treatment (EBT) movement has primarily focused on core intervention content or treatment fidelity and has largely ignored practitioner skills to manage interpersonal process issues that emerge during treatment, especially with difficult-to-treat adolescents (delinquent, substance-using, medical non-adherence) and those of color. A chief complaint of real world practitioners about manualized treatments is the lack of correspondence between following a manual and managing microsocial interpersonal processes (e.g. negative affect) that arise in treating real world clients. Although family-based EBTs share core similarities (e.g. focus on family interactions, emphasis on practitioner engagement, family involvement), most of these treatments do not have an evidence base regarding common implementation and treatment process problems that practitioners experience in delivering particular models, especially in mid-treatment when demands on families to change their behavior is greatest in treatment - a lack that characterizes the field as a whole. Failure to effectively address common interpersonal processes with difficult-to-treat families likely undermines treatment fidelity and sustained use of EBTs, treatment outcome, and contributes to treatment dropout and treatment nonadherence. Recent advancements in wearables, sensing technologies, multivariate time-series analyses, and machine learning allow scientists to make significant advancements in the study of psychotherapy processes by looking under the skin of the provider-client interpersonal interactions that define therapeutic alliance, empathy, and empathic accuracy, along with the predictive validity of these therapy processes (therapeutic alliance, therapist empathy) to treatment outcome. Moreover, assessment of these processes can be extended to develop procedures for training providers to manage difficult interpersonal processes while maintaining a physiological profile that is consistent with astute skills in psychotherapeutic processes. This paper argues for opening the black box of therapy to advance the science of evidence-based psychotherapy by examining the clinical interior of evidence-based treatments to develop the next generation of audit- and feedback- (i.e., systemic review of professional performance) supervision systems

    Coherent Spin-Phonon Coupling in the Layered Ferrimagnet Mn3Si2Te6

    Full text link
    We utilize ultrafast photoexcitation to drive coherent lattice oscillations in the layered ferrimagnetic crystal Mn3Si2Te6, which significantly stiffen below the magnetic ordering temperature. We suggest that this is due to an exchange-mediated contraction of the lattice, stemming from strong magneto-structural coupling in this material. Additionally, simulations of the transient incoherent dynamics reveal the importance of spin relaxation channels mediated by optical and acoustic phonon scattering. Our findings highlight the importance of spin-lattice coupling in van der Waals magnets and a promising route for their dynamic optical control through their intertwined electronic, lattice, and spin degrees of freedom

    Sensitivity analysis of a hybrid-electric aircraft powertrain based on Sobol indices

    Get PDF
    This paper presents a sensitivity analysis based on the Sobol indices which is an essential step “on the road of system optimization”. Such analysis focuses on electrical propeller subsystem (propellers, gearbox, electric motors) including surrogate design models. A previous study [1] has shown that electromechanical actuators (electric generators and electric motors) involve more than 30% of hybrid electric propulsion system weight. Furthermore, most of the variables used for the electric machine design. The electric motor design model is detailed with the related constraints. A physical analysis based on design parameter sensitivity and parameter couplings are described. This study will permit to remove insensitive variables in view of simplifying the global optimization process to be achieved at the whole powertrain level

    Surface Effects on Anisotropic Photoluminescence in One-Dimensional Organic Metal Halide Hybrids

    Full text link
    One-dimensional (1D) organic metal halide hybrids exhibit strongly anisotropic optical properties, highly efficient light emission, and large Stokes shift, holding promises for novel photodetection and lighting applications. However, the fundamental mechanisms governing their unique optical properties and in particular the impacts of surface effects are not understood. Here, we investigate 1D C4N2H14PbBr4 by polarization-dependent time-averaged and time-resolved photoluminescence (TRPL) spectroscopy, as a function of photoexcitation energy. Surprisingly, we find that the emission under photoexcitation polarized parallel to the 1D metal halide chains can be either stronger or weaker than that under perpendicular polarization, depending on the excitation energy. We attribute the excitation-energy-dependent anisotropic emission to fast surface recombination, supported by first-principles calculations of optical absorption in this material. The fast surface recombination is directly confirmed by TRPL measurements, when the excitation is polarized parallel to the chains. Our comprehensive studies provide a more complete picture for a deeper understanding of the optical anisotropy in 1D organic metal halide hybrids

    Controllable Strain-driven Topological Phase Transition and Dominant Surface State Transport in High-Quality HfTe5 Samples

    Full text link
    Controlling materials to create and tune topological phases of matter could potentially be used to explore new phases of topological quantum matter and to create novel devices where the carriers are topologically protected. It has been demonstrated that a trivial insulator can be converted into a topological state by modulating the spin-orbit interaction or the crystal lattice. However, there are limited methods to controllably and efficiently tune the crystal lattice and at the same time perform electronic measurements at cryogenic temperatures. Here, we use large controllable strain to demonstrate the topological phase transition from a weak topological insulator phase to a strong topological insulator phase in high-quality HfTe5 samples. After applying high strain to HfTe5 and converting it into a strong topological insulator, we found that the sample's resistivity increased by more than two orders of magnitude (24,000%) and that the electronic transport is dominated by the topological surface states at cryogenic temperatures. Our findings show that HfTe5 is an ideal material for engineering topological properties, and it could be generalized to study topological phase transitions in van der Waals materials and heterostructures. These results can pave the way to create novel devices with applications ranging from spintronics to fault-tolerant topologically protected quantum computers
    • 

    corecore