2,275 research outputs found

    Bound states of 3He at the edge of a 4He drop on a cesium surface

    Get PDF
    We show that small amounts of 3He atoms, added to a 4He drop deposited on a flat cesium surface at zero temperature, populate bound states localized at the contact line. These edge states show up for drops large enough to develop well defined surface and bulk regions together with a contact line, and they are structurally different from the well-known Andreev states that appear at the free surface and at the liquid-solid interface of films. We illustrate the one-body density of 3He in a drop with 1000 4He atoms, and show that for sufficiently large number of impurities, the density profiles spread beyond the edge, coating both the curved drop surface and its flat base and eventually isolating it from the substrate.Comment: 10 pages and 7 figures. Submitted to PR

    Proton tracking in a high-granularity Digital Tracking Calorimeter for proton CT purposes

    Get PDF
    Radiation therapy with protons as of today utilizes information from x-ray CT in order to estimate the proton stopping power of the traversed tissue in a patient. The conversion from x-ray attenuation to proton stopping power in tissue introduces range uncertainties of the order of 2-3% of the range, uncertainties that are contributing to an increase of the necessary planning margins added to the target volume in a patient. Imaging methods and modalities, such as Dual Energy CT and proton CT, have come into consideration in the pursuit of obtaining an as good as possible estimate of the proton stopping power. In this study, a Digital Tracking Calorimeter is benchmarked for proof-of-concept for proton CT purposes. The Digital Tracking Calorimeteris applied for reconstruction of the tracks and energies of individual high energy protons. The presented prototype forms the basis for a proton CT system using a single technology for tracking and calorimetry. This advantage simplifies the setup and reduces the cost of a proton CT system assembly, and it is a unique feature of the Digital Tracking Calorimeter. Data from the AGORFIRM beamline at KVI-CART in Groningen in the Netherlands and Monte Carlo simulation results are used to in order to develop a tracking algorithm for the estimation of the residual ranges of a high number of concurrent proton tracks. The range of the individual protons can at present be estimated with a resolution of 4%. The readout system for this prototype is able to handle an effective proton frequency of 1 MHz by using 500 concurrent proton tracks in each readout frame, which is at the high end range of present similar prototypes. A future further optimized prototype will enable a high-speed and more accurate determination of the ranges of individual protons in a therapeutic beam.Comment: 21 pages, 8 figure

    Glucose enhancement of memory is modulated by trait anxiety in healthy adolescent males

    Get PDF
    Glucose administration is associated with memory enhancement in healthy young individuals under conditions of divided attention at encoding. While the specific neurocognitive mechanisms underlying this ‘glucose memory facilitation effect’ are currently uncertain, it is thought that individual differences in glucoregulatory efficiency may alter an individual’s sensitivity to the glucose memory facilitation effect. In the present study, we sought to investigate whether basal hypothalamic–pituitary–adrenal axis function (itself a modulator of glucoregulatory efficiency), baseline self-reported stress and trait anxiety influence the glucose memory facilitation effect. Adolescent males (age range = 14–17 years) were administered glucose and placebo prior to completing a verbal episodic memory task on two separate testing days in a counter-balanced, within-subjects design. Glucose ingestion improved verbal episodic memory performance when memory recall was tested (i) within an hour of glucose ingestion and encoding, and (ii) one week subsequent to glucose ingestion and encoding. Basal hypothalamic–pituitary–adrenal axis function did not appear to influence the glucose memory facilitation effect; however, glucose ingestion only improved memory in participants reporting relatively higher trait anxiety. These findings suggest that the glucose memory facilitation effect may be mediated by biological mechanisms associated with trait anxiety

    UNG-initiated base excision repair is the major repair route for 5-fluorouracil in DNA, but 5-fluorouracil cytotoxicity depends mainly on RNA incorporation

    Get PDF
    Cytotoxicity of 5-fluorouracil (FU) and 5-fluoro-2′-deoxyuridine (FdUrd) due to DNA fragmentation during DNA repair has been proposed as an alternative to effects from thymidylate synthase (TS) inhibition or RNA incorporation. The goal of the present study was to investigate the relative contribution of the proposed mechanisms for cytotoxicity of 5-fluoropyrimidines. We demonstrate that in human cancer cells, base excision repair (BER) initiated by the uracil–DNA glycosylase UNG is the major route for FU–DNA repair in vitro and in vivo. SMUG1, TDG and MBD4 contributed modestly in vitro and not detectably in vivo. Contribution from mismatch repair was limited to FU:G contexts at best. Surprisingly, knockdown of individual uracil–DNA glycosylases or MSH2 did not affect sensitivity to FU or FdUrd. Inhibitors of common steps of BER or DNA damage signalling affected sensitivity to FdUrd and HmdUrd, but not to FU. In support of predominantly RNA-mediated cytotoxicity, FU-treated cells accumulated ~3000- to 15 000-fold more FU in RNA than in DNA. Moreover, FU-cytotoxicity was partially reversed by ribonucleosides, but not deoxyribonucleosides and FU displayed modest TS-inhibition compared to FdUrd. In conclusion, UNG-initiated BER is the major route for FU–DNA repair, but cytotoxicity of FU is predominantly RNA-mediated, while DNA-mediated effects are limited to FdUrd

    X-Ray, FUV, and UV Observations of alpha Centauri B: Determination of Long-term Magnetic Activity Cycle and Rotation Period

    Full text link
    We have been carrying out a study of stellar magnetic activity, dynamos, atmospheric physics, and spectral irradiances from a sample of solar-type G0-5 V stars with different ages. One of the major goals of this program is to study the evolution of the Sun's X-ray through NUV spectral irradiances with age. Of particular interest is the determination of the young Sun's elevated levels of high-energy fluxes because of the critical roles that X-ray through FUV emissions play on the photochemical and photoionization evolution of early, young planetary atmospheres and ionospheres. Motivated by the current exoplanetary search missions that are hunting for earth-size planets in the habitable zones of nearby main-sequence G-M stars, we are expanding our program to cooler, less luminous, but much more numerous main-sequence K-type stars, such as alpha Centauri B. The long life (2-3x longer than our Sun) and slow evolution of K stars provide nearly constant energy sources for possible hosted planets. Presented here are X-ray, UV, and recently acquired FUV observations of the K1 V star alpha Cen B. These combined high-energy measures provide a more complete look into the nature of alpha Cen B's magnetic activity and X-UV radiances. We find that alpha Cen B has exhibited significant long-term variability in X-ray through NUV emission fluxes, indicating a solar-like long-term activity cycle of P_cycle = 8.84 years. In addition, analysis of the short-term rotational modulation of mean light due to the effects of magnetically active regions has yielded a well-determined rotation period of P_rotation = 36.2 days. alpha Cen B is the only old main-sequence K star with a reliably determined age and rotation period, and for early K-stars, is an important calibrator for stellar age/rotation/activity relations
    corecore