6 research outputs found

    RippleNet: A Recurrent Neural Network for Sharp Wave Ripple (SPW-R) Detection

    No full text
    Hippocampal sharp wave ripples (SPW-R) have been identified as key bio-markers of important brain functions such as memory consolidation and decision making. SPW-R detection typically relies on hand-crafted feature extraction, and laborious manual curation is often required. In this multidisciplinary study, we propose a novel, self-improving artificial intelligence (AI) method in the form of deep Recurrent Neural Networks (RNN) with Long Short-Term memory (LSTM) layers that can learn features of SPW-R events from raw, labeled input data. The algorithm is trained using supervised learning on hand-curated data sets with SPW-R events. The input to the algorithm is the local field potential (LFP), the low-frequency part of extracellularly recorded electric potentials from the CA1 region of the hippocampus. The output prediction can be interpreted as the time-varying probability of SPW-R events for the duration of the input. A simple thresholding applied to the output probabilities is found to identify times of events with high precision. The reference implementation of the algorithm, named ‘RippleNet’, is open source, freely available, and implemented using a common open-source framework for neural networks (tensorflow.keras) and can be easily incorporated into existing data analysis workflows for processing experimental data

    RippleNet: a Recurrent Neural Network for Sharp Wave Ripple (SPW-R) Detection

    Get PDF
    Abstract Hippocampal sharp wave ripples (SPW-R) have been identified as key bio-markers of important brain functions such as memory consolidation and decision making. Understanding their underlying mechanisms in healthy and pathological brain function and behaviour rely on accurate SPW-R detection. In this multidisciplinary study, we propose a novel, self-improving artificial intelligence (AI) detection method in the form of deep Recurrent Neural Networks (RNN) with Long Short-Term memory (LSTM) layers that can learn features of SPW-R events from raw, labeled input data. The approach contrasts conventional routines that typically relies on hand-crafted, heuristic feature extraction and often laborious manual curation. The algorithm is trained using supervised learning on hand-curated data sets with SPW-R events obtained under controlled conditions. The input to the algorithm is the local field potential (LFP), the low-frequency part of extracellularly recorded electric potentials from the CA1 region of the hippocampus. Its output predictions can be interpreted as time-varying probabilities of SPW-R events for the duration of the inputs. A simple thresholding applied to the output probabilities is found to identify times of SPW-R events with high precision. The non-causal, or bidirectional variant of the proposed algorithm demonstrates consistently better accuracy compared to the causal, or unidirectional counterpart. Reference implementations of the algorithm, named ‘RippleNet’, are open source, freely available, and implemented using a common open-source framework for neural networks () and can be easily incorporated into existing data analysis workflows for processing experimental data

    LFPy: a tool for biophysical simulation of extracellular potentials generated by detailed model neurons

    No full text
    Electrical extracellular recordings, i.e., recordings of the electrical potentials in the extracellular medium between cells, have been a main work-horse in electrophysiology for almost a century. The high-frequency part of the signal (≳500 Hz), i.e., the multi-unit activity (MUA), contains information about the firing of action potentials in surrounding neurons, while the low-frequency part, the local field potential (LFP), contains information about how these neurons integrate synaptic inputs. As the recorded extracellular signals arise from multiple neural processes, their interpretation is typically ambiguous and difficult. Fortunately, a precise biophysical modeling scheme linking activity at the cellular level and the recorded signal has been established: the extracellular potential can be calculated as a weighted sum of all transmembrane currents in all cells located in the vicinity of the electrode. This computational scheme can considerably aid the modeling and analysis of MUA and LFP signals. Here, we describe LFPy, an open source Python package for numerical simulations of extracellular potentials. LFPy consists of a set of easy-to-use classes for defining cells, synapses and recording electrodes as Python objects, implementing this biophysical modeling scheme. It runs on top of the widely used NEURON simulation environment, which allows for flexible usage of both new and existing cell models. Further, calculation of extracellular potentials using the line-source-method is efficiently implemented. We describe the theoretical framework underlying the extracellular potential calculations and illustrate by examples how LFPy can be used both for simulating LFPs, i.e., synaptic contributions from single cells as well a populations of cells, and MUAs, i.e., extracellular signatures of action potentials

    Validating a Computational Framework for Ionic Electrodiffusion with Cortical Spreading Depression as a Case Study

    Get PDF
    Cortical spreading depression (CSD) is a wave of pronounced depolarization of brain tissue accompanied by substantial shifts in ionic concentrations and cellular swelling. Here, we validate a computational framework for modeling electrical potentials, ionic movement, and cellular swelling in brain tissue during CSD. We consider different model variations representing wild-type (WT) or knock-out/knock-down mice and systematically compare the numerical results with reports from a selection of experimental studies. We find that the data for several CSD hallmarks obtained computationally, including wave propagation speed, direct current shift duration, peak in extracellular K+ concentration as well as a pronounced shrinkage of extracellular space (ECS) are well in line with what has previously been observed experimentally. Further, we assess how key model parameters including cellular diffusivity, structural ratios, membrane water and/or K+ permeabilities affect the set of CSD characteristics.publishedVersio

    Astroglial endfeet exhibit distinct Ca2+ signals during hypoosmotic conditions

    No full text
    Astrocytic endfeet cover the brain surface and form a sheath around the cerebral vasculature. An emerging concept is that endfeet control blood–brain water transport and drainage of interstitial fluid and waste along paravascular pathways. Little is known about the signaling mechanisms that regulate endfoot volume and hence the width of these drainage pathways. Here, we used the genetically encoded fluorescent Ca2+ indicator GCaMP6f to study Ca2+ signaling within astrocytic somata, processes, and endfeet in response to an osmotic challenge known to induce cell swelling. Acute cortical slices were subjected to artificial cerebrospinal fluid with 20% reduction in osmolarity while GCaMP6f fluorescence was imaged with two‐photon microscopy. Ca2+ signals induced by hypoosmotic conditions were observed in all astrocytic compartments except the soma. The Ca2+ response was most prominent in subpial and perivascular endfeet and included spikes with single peaks, plateau‐type elevations, and rapid oscillations, the latter restricted to subpial endfeet. Genetic removal of the type 2 inositol 1,4,5‐triphosphate receptor (IP3R2) severely suppressed the Ca2+ responses in endfeet but failed to affect brain water accumulation in vivo after water intoxication. Furthermore, the increase in endfoot Ca2+ spike rate during hypoosmotic conditions was attenuated in mutant mice lacking the aquaporin‐4 anchoring molecule dystrophin and after blockage of transient receptor potential vanilloid 4 channels. We conclude that the characteristics and underpinning of Ca2+ responses to hypoosmotic stress differ within the astrocytic territory and that IP3R2 is essential for the Ca2+ signals only in subpial and perivascular endfeet

    Begonia - a two-photon imaging analysis pipeline for astrocytic Ca2+ signals

    No full text
    Imaging the intact brain of awake behaving mice without the dampening effects of anesthesia, has revealed an exceedingly rich repertoire of astrocytic Ca 2+ signals. Analyzing and interpreting such complex signals pose many challenges. Traditional analyses of fluorescent changes typically rely on manually outlined static region-of-interests, but such analyses fail to capture the intricate spatiotemporal patterns of astrocytic Ca 2+ dynamics. Moreover, all astrocytic Ca 2+ imaging data obtained from awake behaving mice need to be interpreted in light of the complex behavioral patterns of the animal. Hence processing multimodal data, including animal behavior metrics, stimulation timings, and electrophysiological signals is needed to interpret astrocytic Ca 2+ signals. Managing and incorporating these data types into a coherent analysis pipeline is challenging and time-consuming, especially if research protocols change or new data types are added. Here, we introduce Begonia, a MATLAB-based data management and analysis toolbox tailored for the analyses of astrocytic Ca 2+ signals in conjunction with behavioral data. The analysis suite includes an automatic, event-based algorithm with few input parameters that can capture a high level of spatiotemporal complexity of astrocytic Ca 2+ signals. The toolbox enables the experimentalist to quantify astrocytic Ca 2+ signals in a precise and unbiased way and combine them with other types of time series data
    corecore