136 research outputs found

    Energy Spectrum of the Electrons Accelerated by a Reconnection Electric Field: Exponential or Power Law?

    Full text link
    The direct current (DC) electric field near the reconnection region has been proposed as an effective mechanism to accelerate protons and electrons in solar flares. A power-law energy spectrum was generally claimed in the simulations of electron acceleration by the reconnection electric field. However in most of the literature, the electric and magnetic fields were chosen independently. In this paper, we perform test-particle simulations of electron acceleration in a reconnecting magnetic field, where both the electric and magnetic fields are adopted from numerical simulations of the MHD equations. It is found that the accelerated electrons present a truncated power-law energy spectrum with an exponential tail at high energies, which is analogous to the case of diffusive shock acceleration. The influences of reconnection parameters on the spectral feature are also investigated, such as the longitudinal and transverse components of the magnetic field and the size of the current sheet. It is suggested that the DC electric field alone might not be able to reproduce the observed single or double power-law distributions.Comment: 18 pages, 6 figures, published in Ap

    Charge Transport in the Dense Two-Dimensional Coulomb Gas

    Full text link
    The dynamics of a globally neutral system of diffusing Coulomb charges in two dimensions, driven by an applied electric field, is studied in a wide temperature range around the Berezinskii-Kosterlitz-Thouless transition. I argue that the commonly accepted ``free particle drift'' mechanism of charge transport in this system is limited to relatively low particle densities. For higher densities, I propose a modified picture involving collective ``partner transfer'' between bound pairs. The new picture provides a natural explanation for recent experimental and numerical findings which deviate from standard theory. It also clarifies the origin of dynamical scaling in this context.Comment: 4 pages, RevTeX, 2 eps figures included; some typos corrected, final version to be published in Phys. Rev. Let

    Decoherence Bounds on Quantum Computation with Trapped Ions

    Full text link
    Using simple physical arguments we investigate the capabilities of a quantum computer based on cold trapped ions. From the limitations imposed on such a device by spontaneous decay, laser phase coherence, ion heating and other sources of error, we derive a bound between the number of laser interactions and the number of ions that may be used. The largest number which may be factored using a variety of species of ion is determined.Comment: 5 pages in RevTex, 2 figures, the paper is also avalaible at http://qso.lanl.gov/qc

    An evaluation of possible mechanisms for anomalous resistivity in the solar corona

    Full text link
    A wide variety of transient events in the solar corona seem to require explanations that invoke fast reconnection. Theoretical models explaining fast reconnection often rely on enhanced resistivity. We start with data derived from observed reconnection rates in solar flares and seek to reconcile them with the chaos-induced resistivity model of Numata & Yoshida (2002) and with resistivity arising out of the kinetic Alfv\'en wave (KAW) instability. We find that the resistivities arising from either of these mechanisms, when localized over lengthscales of the order of an ion skin depth, are capable of explaining the observationally mandated Lundquist numbers.Comment: Accepted, Solar Physic

    Orbital dynamics of "smart dust" devices with solar radiation pressure and drag

    Get PDF
    This paper investigates how perturbations due to asymmetric solar radiation pressure, in the presence of Earth shadow, and atmospheric drag can be balanced to obtain long-lived Earth centred orbits for swarms of micro-scale 'smart dust' devices, without the use of active control. The secular variation of Keplerian elements is expressed analytically through an averaging technique. Families of solutions are then identified where Sun-synchronous apse-line precession is achieved passively to maintain asymmetric solar radiation pressure. The long-term orbit evolution is characterized by librational motion, progressively decaying due to the non-conservative effect of atmospheric drag. Long-lived orbits can then be designed through the interaction of energy gain from asymmetric solar radiation pressure and energy dissipation due to drag. In this way, the usual short drag lifetime of such high area-to-mass spacecraft can be greatly extended (and indeed selected). In addition, the effect of atmospheric drag can be exploited to ensure the rapid end-of-life decay of such devices, thus preventing long-lived orbit debris

    Mean-field description of ground-state properties of drip-line nuclei. (I) Shell-correction method

    Full text link
    A shell-correction method is applied to nuclei far from the beta stability line and its suitability to describe effects of the particle continuum is discussed. The sensitivity of predicted locations of one- and two-particle drip lines to details of the macroscopic-microscopic model is analyzed.Comment: 22 REVTeX pages, 13 uuencoded postscript figures available upon reques

    Evidence for a singularity in ideal magnetohydrodynamics: implications for fast reconnection

    Full text link
    Numerical evidence for a finite-time singularity in ideal 3D magnetohydrodynamics (MHD) is presented. The simulations start from two interlocking magnetic flux rings with no initial velocity. The magnetic curvature force causes the flux rings to shrink until they come into contact. This produces a current sheet between them. In the ideal compressible calculations, the evidence for a singularity in a finite time tct_c is that the peak current density behaves like J1/(tct)|J|_\infty \sim 1/(t_c-t) for a range of sound speeds (or plasma betas). For the incompressible calculations consistency with the compressible calculations is noted and evidence is presented that there is convergence to a self-similar state. In the resistive reconnection calculations the magnetic helicity is nearly conserved and energy is dissipated.Comment: 4 pages, 4 figure

    Direct observation of the energy release site in a solar flare by SDO/AIA, Hinode/EIS and RHESSI

    Get PDF
    We present direct evidence for the detection of the main energy release site in a non-eruptive solar flare, SOL2013-11-09T06:38UT. This GOES C2.7 event was characterised by two flaring ribbons and a compact, bright coronal source located between them, which is the focus of our study. We use imaging from SDO/AIA, and imaging spectroscopy from RHESSI to characterise the thermal and non-thermal emission from the coronal source, and EUV spectroscopy from the Hinode/EIS, which scanned the coronal source during the impulsive peak, to analyse Doppler shifts in Fe XII and Fe XXIV emission lines, and determine the source density. The coronal source exhibited an impulsive emission lightcurve in all AIA filters during the impulsive phase. RHESSI hard X-ray images indicate both thermal and non-thermal emission at the coronal source, and its plasma temperature derived from RHESSI imaging spectroscopy shows an impulsive rise, reaching a maximum at 12-13 MK about 10 seconds prior to the hard X-ray peak. High redshifts associated with this bright source indicate downflows of 40-250 km/s at a broad range of temperatures, interpreted as loop shrinkage and/or outflows along the magnetic field. Outflows from the coronal source towards each ribbon are also observed by AIA images at 171, 193, 211, 304 and 1600 A. The electron density of the source obtained from a Fe XIV line pair is 1011.5010^{11.50} which is collisionally thick to electrons with energy up to 45-65 keV, responsible for the source's non-thermal X-ray emission. We conclude that the bright coronal source is the location of the main release of magnetic energy in this flare, with a geometry consistent with component reconnection between crossing, current-carrying loops. We argue that the energy that can be released via reconnection, based on observational estimates, can plausibly account for the non-thermal energetics of the flare.Comment: 10 pages, 7 figure

    Thermodynamics and structure of self-assembled networks

    Full text link
    We study a generic model of self-assembling chains which can branch and form networks with branching points (junctions) of arbitrary functionality. The physical realizations include physical gels, wormlike micells, dipolar fluids and microemulsions. The model maps the partition function of a solution of branched, self-assembling, mutually avoiding clusters onto that of a Heisenberg magnet in the mathematical limit of zero spin components. The model is solved in the mean field approximation. It is found that despite the absence of any specific interaction between the chains, the entropy of the junctions induces an effective attraction between the monomers, which in the case of three-fold junctions leads to a first order reentrant phase separation between a dilute phase consisting mainly of single chains, and a dense network, or two network phases. Independent of the phase separation, we predict the percolation (connectivity) transition at which an infinite network is formed that partially overlaps with the first-order transition. The percolation transition is a continuous, non thermodynamic transition that describes a change in the topology of the system. Our treatment which predicts both the thermodynamic phase equilibria as well as the spatial correlations in the system allows us to treat both the phase separation and the percolation threshold within the same framework. The density-density correlation correlation has a usual Ornstein-Zernicke form at low monomer densities. At higher densities, a peak emerges in the structure factor, signifying an onset of medium-range order in the system. Implications of the results for different physical systems are discussed.Comment: Submitted to Phys. Rev.

    A Quantitative Model of Energy Release and Heating by Time-dependent, Localized Reconnection in a Flare with a Thermal Loop-top X-ray Source

    Full text link
    We present a quantitative model of the magnetic energy stored and then released through magnetic reconnection for a flare on 26 Feb 2004. This flare, well observed by RHESSI and TRACE, shows evidence of non-thermal electrons only for a brief, early phase. Throughout the main period of energy release there is a super-hot (T>30 MK) plasma emitting thermal bremsstrahlung atop the flare loops. Our model describes the heating and compression of such a source by localized, transient magnetic reconnection. It is a three-dimensional generalization of the Petschek model whereby Alfven-speed retraction following reconnection drives supersonic inflows parallel to the field lines, which form shocks heating, compressing, and confining a loop-top plasma plug. The confining inflows provide longer life than a freely-expanding or conductively-cooling plasma of similar size and temperature. Superposition of successive transient episodes of localized reconnection across a current sheet produces an apparently persistent, localized source of high-temperature emission. The temperature of the source decreases smoothly on a time scale consistent with observations, far longer than the cooling time of a single plug. Built from a disordered collection of small plugs, the source need not have the coherent jet-like structure predicted by steady-state reconnection models. This new model predicts temperatures and emission measure consistent with the observations of 26 Feb 2004. Furthermore, the total energy released by the flare is found to be roughly consistent with that predicted by the model. Only a small fraction of the energy released appears in the super-hot source at any one time, but roughly a quarter of the flare energy is thermalized by the reconnection shocks over the course of the flare. All energy is presumed to ultimately appear in the lower-temperature T<20 MK, post-flare loops
    corecore