60 research outputs found

    The 42nd Symposium Chromatographic Methods of Investigating Organic Compounds : Book of abstracts

    Get PDF
    The 42nd Symposium Chromatographic Methods of Investigating Organic Compounds : Book of abstracts. June 4-7, 2019, Szczyrk, Polan

    Changing Concepts and Methods of Confl ict Management in Africa: The Responsibility to Protect and the African Standby Force

    No full text
    The current security debate centres on state security vs human security, and explores the imperative to intervene on humanitarian grounds, despite international norms on confl ict intervention and state sovereignty. Rhetoric was replaced with action via the Responsibility to Protect report, which revised the concept of sovereignty and framed it as the state's responsibility to protect its citizens, but also reoriented the security debate on the African continent from a principle of ‘non-interference' to one of ‘non-indifference'. Concurrently, the AU's Peace and Security Council approved the development of an independent African Standby Force to react rapidly to confl ict in Africa. This article argues that the principles of The Responsibility to Protect document, in combination with the developing African Standby Force, have the potential to effectively address the present security concerns in Africa. African Insight Vol. 36 (3&4) 2006: pp. 26-4

    Book Review: Prospects for a Security Community in Southern Africa

    No full text
    No Abstract. African Insight Vol. 36 (3&4) 2006: pp. 266-26

    Application of HPLC-DAD for In Vitro Investigation of Acetylcholinesterase Inhibition Activity of Selected Isoquinoline Alkaloids from Sanguinaria canadensis Extracts

    No full text
    Isoquinoline alkaloids may have a wide range of pharmacological activities. Some of them have acetylcholinesterase activity inhibition. Nowadays, neurodegenerative disorders such as Alzheimer’s disease have become a serious public health problem. Searching for new effective compounds with inhibited acetylcholinesterase activity is one of the most significant challenges of modern scientific research. The aim of this study was the in vitro investigation of acetylcholinesterase activity inhibition of extracts obtained from Sanguinaria canadensis collected before, during and after flowering. The acetylcholinesterase activity inhibition of these extracts has not been previously tested. The aim was also to quantify selected alkaloids in the investigated extracts by high performance liquid chromatography (HPLC). The analyses of alkaloid content were performed using HPLC in reversed phase (RP) mode using Polar RP column and mobile phase containing acetonitrile, water and ionic liquid (IL). The acetylcholinesterase activity inhibition of the tested plant extracts and respective alkaloid standards were examined using high performance liquid chromatography with diode-array detector (HPLC-DAD) for the quantification of 5-thio-2-nitro-benzoic acid, which is the product of the reaction between the thiocholine (product of the hydrolysis of acetylthiocholine reaction) with Ellman reagent. The application of the HPLC method allowed for elimination of absorption of interfering components, for example, alkaloids such as sanguinarine and berberine. It is revealed that the HPLC method can be successfully used for the evaluation of the acetylcholinesterase inhibitory activity in samples such as plant extracts, especially those containing colored components adsorbing at wavelength in the range 405–412 nm. The acetylcholinesterase inhibition activity synergy of pairs of alkaloid standards and mixture of all investigated alkaloids was also determined. Most investigated alkaloids and all Sanguinaria canadensis extracts exhibited very high acetylcholinesterase activity inhibition. IC50 values obtained for alkaloid standards were from 0.36 for berberine to 23.13 µg/mL for protopine and from 61.24 to 89.14 µg/mL for Sanguinaria canadensis extracts. Our investigations demonstrated that these plant extracts can be recommended for further in vivo experiments to confirm their acetylcholinesterase activity inhibition

    Determination of Anti-Alzheimer’s Disease Activity of Selected Plant Ingredients

    No full text
    Neurodegenerative diseases, among which one of the more common is Alzheimer’s disease, are the one of the biggest global public health challenges facing our generation because of the increasing elderly population in most countries. With the growing burden of these diseases, it is essential to discover and develop new treatment options capable of preventing and treating them. Neurodegenerative diseases, among which one of the most common is Alzheimer’s disease, are a multifactorial disease and therefore demand multiple therapeutic approaches. One of the most important therapeutic strategies is controlling the level of acetylcholine—a neurotransmitter in cholinergic synapses—by blocking the degradation of acetylcholine using acetylcholinesterase inhibitors such as tacrine, galantamine, donepezil and rivastigmine. However, these drugs can cause some adverse side effects, such as hepatotoxicity and gastrointestinal disorder. Thus, the search for new, more effective drugs is very important. In the last few years, different active constituents from plants have been tested as potential drugs in neurodegenerative disease therapy. The availability, lower price and less toxic effects of herbal medicines compared with synthetic agents make them a simple and excellent choice in the treatment of neurodegenerative diseases. The empirical approach to discovering new drugs from the systematic screening of plant extracts or plant-derived compounds is still an important strategy when it comes to finding new biologically active substances. The aim of this review is to identify new, safe and effective compounds that are potential candidates for further in vivo and clinical tests from which more effective drugs for the treatment of Alzheimer’s disease could be selected. We reviewed the methods used to determine anti-Alzheimer’s disease activity. Here, we have discussed the relevance of plant-derived compounds with in vitro activity. Various plants and phytochemical compounds have shown different activity that could be beneficial in the treatment of Alzheimer’s disorders. Most often, medicinal plants and their active components have been investigated as acetylcholinesterase and/or butyrylcholinesterase activity inhibitors, modifiers of β-amyloid processing and antioxidant agents. This study also aims to highlight species with assessed efficacy, usable plant parts and the most active plant components in order to identify species and compounds of interest for further study. Future research directions are suggested and recommendations made to expand the use of medicinal plants, their formulations and plant-derived active compounds to prevent, mitigate and treat Alzheimer’s disease

    Review of Chromatographic Methods Coupled with Modern Detection Techniques Applied in the Therapeutic Drugs Monitoring (TDM)

    No full text
    Therapeutic drug monitoring (TDM) is a tool used to integrate pharmacokinetic and pharmacodynamics knowledge to optimize and personalize various drug therapies. The optimization of drug dosing may improve treatment outcomes, reduce toxicity, and reduce the risk of developing drug resistance. To adequately implement TDM, accurate and precise analytical procedures are required. In clinical practice, blood is the most commonly used matrix for TDM; however, less invasive samples, such as dried blood spots or non-invasive saliva samples, are increasingly being used. The choice of sample preparation method, type of column packing, mobile phase composition, and detection method is important to ensure accurate drug measurement and to avoid interference from matrix effects and drug metabolites. Most of the reported procedures used liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) techniques due to its high selectivity and sensitivity. High-performance chromatography with ultraviolet detection (HPLC-UV) methods are also used when a simpler and more cost-effective methodology is desired for clinical monitoring. The application of high-performance chromatography with fluorescence detection (HPLC-FLD) with and without derivatization processes and high-performance chromatography with electrochemical detection (HPLC-ED) techniques for the analysis of various drugs in biological samples for TDM have been described less often. Before chromatographic analysis, samples were pretreated by various procedures—most often by protein precipitation, liquid–liquid extraction, and solid-phase extraction, rarely by microextraction by packed sorbent, dispersive liquid–liquid microextraction. The aim of this article is to review the recent literature (2010–2020) regarding the use of liquid chromatography with various detection techniques for TDM

    Coupled Simulations in Plasma Physics with the Integrated Plasma Simulator Platform

    No full text
    AbstractSimulations of fusion plasma obtained in a Tokamak device can involve a wide range of physics phenomena occurring at different scales. Programming such a simulation is challenging and tends to increase the complexity of the code and its maintenance. Many approaches are trying to alleviate this issue by coupling several single scale components, the complexity being moved from the physics code to the coupling and execution platform. In this paper we are presenting the Integrated Plasma Simulator (IPS) platform, its advantages for running efficiently coupled simulations for different plasma physics use cases and are briefly comparing it to other platforms used in the fusion community

    Development of the Validated Stability-Indicating Method for the Determination of Vortioxetine in Bulk and Pharmaceutical Formulation by HPLC-DAD, Stress Degradation Kinetics Studies and Detection of Degradation Products by LC-ESI-QTOF-MS

    No full text
    Vortioxetine (VOR) is a new antidepressant drug used to treat major depressive disorder. In this work, a novel, simple, rapid, accurate, precise, selective, stability-indicating, and fully validated high-performance liquid chromatography method with diode array detection (HPLC-DAD) was developed to determine VOR in bulk and pharmaceutical formulations. A Polar-RP column was used, with a mobile phase consisting of acetonitrile (ACN), methanol (MeOH), acetate buffer pH 3.5, and addition of diethylamine (DEA) in the isocratic elution mode. Assessing the stability of the VOR is fundamental to guarantee the efficacy, safety, and quality of drug products. In this study, the VOR active pharmaceutical ingredient (API) and tablets were subjected to a detailed study of forced degradation, using several degrading agents (acid, alkaline, water, heat, light, and oxidation agents). The developed HPLC-DAD method allows the collection of all the essential data to determine degradation kinetics. It was found that the decomposition of vortioxetine is fragile towards oxidative conditions and photolysis, yielding the first-order and second-order kinetic reaction in the above stress conditions, respectively. The degradation products (DPs) were identified by the high-resolution liquid chromatography coupled with electrospray ionization-quadrupole-time of flight-mass spectrometry (LC-ESI-QTOF-MS) method. The HPLC-DAD method was successfully applied for the quantification of VOR in tablets. Additionally, in silico toxicity prediction of the DPs was performed

    Three-Component Reaction of Diamines with Triethyl Orthoformate and Diethyl Phosphite and Anti-Proliferative and Antiosteoporotic Activities of the Products

    No full text
    A three-component reaction between diamines (diaminobenzenes, diaminocyclohexanes, and piperazines), triethyl orthoformate, and diethyl phosphite was studied in some detail. In the case of 1,3- and 1,4-diamines and piperazines, products of the substitution of two amino moieties—the corresponding tetraphosphonic acids—were obtained. In the cases of 1,2-diaminobenzene, 1,2-diaminocyclohexanes and 1,2-diaminocyclohexenes, only one amino group reacted. This is most likely the result of the formation of hydrogen bonding between the phosphonate oxygen and a hydrogen of the adjacent amino group, which caused a decrease in the reactivity of the amino group. Most of the obtained compounds inhibited the proliferation of RAW 264.7 macrophages, PC-3 human prostate cancer cells, and MCF-7 human breast cancer cells, with 1, trans-7, and 16 showing broad nonspecific activity, which makes these compounds especially interesting in the context of anti-osteolytic treatment and the blocking of interactions and mutual activation of osteoclasts and tumor metastatic cells. These compounds exhibit similar activity to zoledronic acid and higher activity than incadronic acid, which were used as controls. However, studies of sheep with induced osteoporosis carried out with compound trans-7 did not support this assumption
    corecore