5,426 research outputs found

    New Physics and CP Violation in Singly Cabibbo Suppressed D Decays

    Get PDF
    We analyze various theoretical aspects of CP violation in singly Cabibbo suppressed (SCS) D-meson decays, such as DKK,ππD \to K K,\pi \pi. In particular, we explore the possibility that CP asymmetries will be measured close to the present level of experimental sensitivity of O(102)O(10^{-2}). Such measurements would signal new physics. We make the following points: (i) The mechanism at work in neutral D decays could be indirect or direct CP violation (or both). (ii) One can experimentally distinguish between these possibilities. (iii) If the dominant CP violation is indirect, then there are clear predictions for other modes. (iv) Tree-level direct CP violation in various known models is constrained to be much smaller than 10210^{-2}. (v) SCS decays, unlike Cabibbo favored or doubly Cabibbo suppressed decays, are sensitive to new contributions from QCD penguin operators and especially from chromomagnetic dipole operators. This point is illustrated with supersymmetric gluino-squark loops, which can yield direct CP violating effects of O(102)O(10^{-2}).Comment: 36 pages, 5 figure

    Optomechanical manipulation with hyperbolic metasurfaces

    Full text link
    Auxiliary nanostructures introduce additional flexibility into optomechanical manipulation schemes. Metamaterials and metasurfaces capable to control electromagnetic interactions at the near-field regions are especially beneficial for achieving improved spatial localization of particles, reducing laser powers required for trapping, and for tailoring directivity of optical forces. Here, optical forces acting on small particles situated next to anisotropic substrates, are investigated. A special class of hyperbolic metasurfaces is considered in details and is shown to be beneficial for achieving strong optical pulling forces in a broad spectral range. Spectral decomposition of the Green functions enables identifying contributions of different interaction channels and underlines the importance of the hyperbolic dispersion regime, which plays the key role in optomechanical interactions. Homogenised model of the hyperbolic metasurface is compared to its metal-dielectric multilayer realizations and is shown to predict the optomechanical behaviour under certain conditions related to composition of the top layer of the structure and its periodicity. Optomechanical metasurfaces open a venue for future fundamental investigations and a range of practical applications, where accurate control over mechanical motion of small objects is required

    Macroscopic model of formation of the domain of multiple filamentation in glass and water

    Get PDF
    The results of natural experiments of the propagation of powerful femtosecond laser radiation in glass and water

    The trigonal polymorph of strontium tetra­borate, β-SrB4O7

    Get PDF
    The asymmetric unit of the title compound, β-SrB4O7, contains five Sr atoms (three located on a threefold rotation axis), twelve B and 21 O atoms. The structure is made up from BO3 triangles and BO4 tetra­hedra in a 1:1 ratio. Pairs of BO3 triangles are linked to BO4 tetra­hedra via common corners, forming chains. These chains are further linked to adjacent chains through corner-sharing, leading to a three-dimensional framework with channels running parallel to [001]. The Sr2+ ions reside in the channels and exhibit strongly distorted polyhedra The density of the β-polymorph is considerably lower than that of α-SrB4O7, which is constructed solely from BO4 tetra­hedra

    Dielectric properties characterization of La- and Dy-doped BiFeO3 thin films

    Get PDF
    The dielectric response of La- and Dy- doped BiFeO3 thin films at microwave frequencies (up to 12 GHz) has been monitored as a function of frequency, direct current (dc) electric field, and magnetic field in a temperature range from 25 to 300 °C. Both the real and imaginary parts of the response have been found to be non-monotonic (oscillating) functions of measuring frequency. These oscillations are not particularly sensitive to a dc electric field; however, they are substantially dampened by a magnetic field. The same effect has been observed when the volume of the characterized sample is increased. This phenomenon is attributed to the presence of a limited number of structural features with a resonance type response. The exact origin of these features is unknown at present. Leakage current investigations were performed on the whole set of films. The films were highly resistive with low leakage current, thereby giving us confidence in the microwave measurements. These typically revealed ‘N'-type I-V characteristic

    Multiple filamentation of laser beams with different diameters in the air at a 100-meter path

    Get PDF
    Results of experiments on controlling the position and length of the filamentation zone of femtosecond laser pulses in atmospheric path length 110 m using different initial spatial focusing and defocusing. The obtained distribution of filaments along the filamentation zone, measured dependence the length of the filamentation zone of the numerical aperture of the beam, its initial radius and pulse power

    Multiple filamentation of laser beams with different diameters in the air at a 150-meter path

    Get PDF
    Results of experiments on controlling the position and length of the filamentation zone of femtosecond laser pulses in atmospheric path length 150 m using different initial spatial focusing and defocusing. The obtained distribution of filaments along the filamentation zone, measured dependence the length of the filamentation zone of the numerical aperture of the beam, its initial radius and pulse power

    Filamentation of terawatt laser pulses along hundred-meter atmospheric paths

    Get PDF
    Results of the experimental study of filamentation of terawatt femtosecond pulses of a Ti:Sapphire laser along an atmospheric path 106 m long using different spatial focusing and pulse power are presented. The control of filamentation region position and length by means of changing the initial laser beam focusing is shown to be highly effective. Dependencies are derived of filamentation region position and length on the initial degree of focusing, pulse power, and the number of filaments along the filamentation region. The obtained data on the filamentation region length and the number of filaments are compared with the results of our previous experiments and data from other authors
    corecore