176 research outputs found

    The Feelings and Emotions of Change: a Study of the Affective Dimensions of Change in a Public Middle School

    Get PDF
    The Elementary and Secondary Education Act (ESEA) reauthorization has been slow. Four entities within the United States have reacted by spearheading the development of new Common Core State Standards, and new state summative assessments. The Council of Chief State School Officers, and the National Governors Association standards, and the Smarter Balanced Assessments Consortium (SBAC), and the Partnership for Assessment of Readiness of College and Careers Consortium (PARCC), assessments. The state of California committed to these changes in 2010 and 2011 respectively (California Department of Education, 2013b). The affective dimensions that are the result of change are part of the very fabric of every organizational entity, including schools. These dimensions, including ultimately change resistance can lead to undermining, and possible failure of change initiatives (Coggshall, 2004; George, 1996; George & Brief, 1992; Jager, 2001; Sy, Cote, & Saavedra, 2005). The site for this case study was a small, rural, California public middle school where the aforementioned systemic changes continue to occur. The study encompassed semi structured interviews of 12 teachers, artifact collection, and field notes.Ed.D., Educational Leadership and Management -- Drexel University, 201

    Telescopes in Near Space: Balloon Exoplanet Nulling Interferometer (BigBENI)

    Get PDF
    A significant and often overlooked path to advancing both science and technology for direct imaging and spectroscopic characterization of exosolar planets is to fly "near space" missions, i.e. balloon borne exosolar missions. A near space balloon mission with two or more telescopes, coherently combined, is capable of achieving a subset of the mission science goals of a single large space telescope at a small fraction of the cost. Additionally such an approach advances technologies toward flight readiness for space flight. Herein we discuss the feasibility of flying two 1.2 meter telescopes, with a baseline separation of 3.6 meters, operating in visible light, on a composite boom structure coupled to a modified visible nulling coronagraph operating to achieve an inner working angle of 60 milli-arcseconds. We discuss the potential science return, atmospheric residuals at 135,000 feet, pointing control and visible nulling and evaluate the state-or-art of these technologies with regards to balloon missions

    The Segmented Aperture Interferometric Nulling Testbed (SAINT) III: Control Systems Analysis and Preliminary Results

    Get PDF
    This work presents a detailed current performance analysis for the telescope, pointing, and coronagraph com- ponent subsystems of the Segmented Aperture Interferometric Nulling Testbed (SAINT). The project pairs an active segmented mirror with the Visible Nulling Coronagraph (VNC) towards demonstrating capabilities for the future space observatories needed to directly detect and characterize Earth-sized worlds around nearby stars. We describe approaches to optimize subsystem wavefront sensing and control parameters, summarizing relevant scal- ing relations between these parameters, residual errors, and observed contrast measurements. Preliminary results from diagnostic testing under various control states are presented along with intermediate contrast measurements towards demonstrating the full system

    High Contrast Vacuum Nuller Testbed (VNT) Contrast, Performance and Null Control

    Get PDF
    Herein we report on our contrast assessment and the development, sensing and control of the Vacuum Nuller Testbed to realize a Visible Nulling Coronagraphy (VNC) for exoplanet detection and characterization. Tbe VNC is one of the few approaches that works with filled, segmented and sparse or diluted-aperture telescope systems. It thus spans a range of potential future NASA telescopes and could be flown as a separate instrument on such a future mission. NASA/Goddard Space Flight Center has an established effort to develop VNC technologies, and an incremental sequence of testbeds to advance this approach and its critical technologies. We discuss the development of the vacuum Visible Nulling Coronagraph testbed (VNT). The VNT is an ultra-stable vibration isolated testbed that operates under closed-loop control within a vacuum chamber. It will be used to achieve an incremental sequence of three visible-light nulling milestones with sequentially higher contrasts of 10(exp 8), 10(exp 9) and ideally 10(exp 10) at an inner working angle of 2*lambda/D. The VNT is based on a modified Mach-Zehnder nulling interferometer, with a "W" configuration to accommodate a hex-packed MEMS based deformable mirror, a coherent fiber bundle and achromatic phase shifters. We discuss the laboratory results, optical configuration, critical technologies and the null sensing and control approach

    Technology Advancement of the Visible Nulling Coronagraph

    Get PDF
    The critical high contrast imaging technology for the Extrasolar Planetary Imaging Coronagraph (EPIC) mission concept is the visible nulling coronagraph (VNC). EPIC would be capable of imaging jovian planets, dust/debris disks, and potentially super-Earths and contribute to answering how bright the debris disks are for candidate stars. The contrast requirement for EPIC is 10(exp 9) contrast at 125 milli-arseconds inner working angle. To advance the VNC technology NASA/Goddard Space Flight Center, in collaboration with Lockheed-Martin, previously developed a vacuum VNC testbed, and achieved narrowband and broadband suppression of the core of the Airy disk. Recently our group was awarded a NASA Technology Development for Exoplanet Missions to achieve two milestones: (i) 10(exp 8) contrast in narrowband light, and, (ii) 10(ecp 9) contrast in broader band light; one milestone per year, and both at 2 Lambda/D inner working angle. These will be achieved with our 2nd generation testbed known as the visible nulling testbed (VNT). It contains a MEMS based hex-packed segmented deformable mirror known as the multiple mirror array (MMA) and coherent fiber bundle, i.e. a spatial filter array (SFA). The MMA is in one interferometric arm and works to set the wavefront differences between the arms to zero. Each of the MMA segments is optically mapped to a single mode fiber of the SFA, and the SFA passively cleans the sub-aperture wavefront error leaving only piston, tip and tilt error to be controlled. The piston degree of freedom on each segment is used to correct the wavefront errors, while the tip/tilt is used to simultaneously correct the amplitude errors. Thus the VNT controls both amplitude and wavefront errors with a single MMA in closed-loop in a vacuum tank at approx.20 Hz. Herein we will discuss our ongoing progress with the VNT

    Measuring Low-Order Aberrations in a Segmented Telescope

    Get PDF
    The in-focus PSF optimizer (IPO) is an algorithm for use in monitoring and controlling the alignment of the segments of a segmented-mirror astronomical telescope. IPO is so named because it computes wave-front aberrations of the telescope from digitized pointspread functions (PSFs) measured in infocus images. Inasmuch as distant astronomical objects that behave optically as point sources can typically be seen in almost any astronomical image, the main benefit afforded by IPO may be to enable maintenance of mirror-segment alignments without detracting from valuable scientific-observation time. IPO evolved from prescription-retrieval type algorithms. Prescription retrieval uses in-focus and out-of-focus PSFs to infer the state of an imaging optical system. The state, in this context, refers to the positions, orientations, and low-order figure errors of the optical elements in the system. Both prescription- retrieval and IPO use an iterative, nonlinear, least-squares optimizer to compute the optimal state parameters such that a digital computer-generated model image matches the digitized image acquired from the real system. The difference between IPO and prescription- retrieval algorithms is that IPO is specifically designed to utilize infocus images only. Although the restriction to in-focus images limits IPO to calculating only the lowest-order wave front aberrations, it also causes the resulting computation to take much less time because fewer degrees of freedom are included in the optimization process. In the prescription retrieval software developed at JPL, the model images are generated using the ray-trace/physical optics program, MACOS. IPO, on the other hand, uses a linear sensitivity matrix to compute the exit-pupil wave front from the system parameters; the wave front is then converted into a complex pupil field, which is then propagated to the image plane via a fast Fourier transform. This approach is computationally faster and requires less computer memory than is needed for prescription retrieval

    Effects of Hst3p inhibition in Candida albicans: a genome-wide H3K56 acetylation analysis

    Get PDF
    Candida spp. represent the third most frequent worldwide cause of infection in Intensive Care Units with a mortality rate of almost 40%. The classes of antifungals currently available include azoles, polyenes, echinocandins, pyrimidine derivatives, and allylamines. However, the therapeutical options for the treatment of candidiasis are drastically reduced by the increasing antifungal resistance. The growing need for a more targeted antifungal therapy is limited by the concern of finding molecules that specifically recognize the microbial cell without damaging the host. Epigenetic writers and erasers have emerged as promising targets in different contexts, including the treatment of fungal infections. In C. albicans, Hst3p, a sirtuin that deacetylates H3K56ac, represents an attractive antifungal target as it is essential for the fungus viability and virulence. Although the relevance of such epigenetic regulator is documented for the development of new antifungal therapies, the molecular mechanism behind Hst3p-mediated epigenetic regulation remains unrevealed. Here, we provide the first genome-wide profiling of H3K56ac in C. albicans resulting in H3K56ac enriched regions associated with Candida sp. pathogenicity. Upon Hst3p inhibition, 447 regions gain H3K56ac. Importantly, these genomic areas contain genes encoding for adhesin proteins, degradative enzymes, and white-opaque switching. Moreover, our RNA-seq analysis revealed 1330 upregulated and 1081 downregulated transcripts upon Hst3p inhibition, and among them, we identified 87 genes whose transcriptional increase well correlates with the enrichment of H3K56 acetylation on their promoters, including some well-known regulators of phenotypic switching and virulence. Based on our evidence, Hst3p is an appealing target for the development of new potential antifungal drugs

    Visible Nulling Coronagraphy Testbed Development for Exoplanet Detection

    Get PDF
    Three of the recently completed NASA Astrophysics Strategic Mission Concept (ASMC) studies addressed the feasibility of using a Visible Nulling Coronagraph (VNC) as the prime instrument for exoplanet science. The VNC approach is one of the few approaches that works with filled, segmented and sparse or diluted aperture telescope systems and thus spans the space of potential ASMC exoplanet missions. NASA/Goddard Space Flight Center (GSFC) has a well-established effort to develop VNC technologies and has developed an incremental sequence of VNC testbeds to advance the this approach and the technologies associated with it. Herein we report on the continued development of the vacuum Visible Nulling Coronagraph testbed (VNT). The VNT is an ultra-stable vibration isolated testbed that operates under high bandwidth closed-loop control within a vacuum chamber. It will be used to achieve an incremental sequence of three visible light nulling milestones of sequentially higher contrasts of 10(exp 8) , 10(exp 9) and 10(exp 10) at an inner working angle of 2*lambda/D and ultimately culminate in spectrally broadband (>20%) high contrast imaging. Each of the milestones, one per year, is traceable to one or more of the ASMC studies. The VNT uses a modified Mach-Zehnder nulling interferometer, modified with a modified "W" configuration to accommodate a hex-packed MEMS based deformable mirror, a coherent fiber bundle and achromatic phase shifters. Discussed will be the optical configuration laboratory results, critical technologies and the null sensing and control approach
    corecore