48 research outputs found

    IGF2 stimulates fetal growth in a sex- and organ-dependent manner

    Get PDF
    BackgroundInsulin-like growth factor 2 (IGF2) is a key determinant of fetal growth, and the altered expression of IGF2 is implicated in fetal growth disorders and maternal metabolic derangements including gestational diabetes. Here we studied how increased levels of IGF2 in late pregnancy affect fetal growth.MethodsWe employed a rat model of repeated intrafetal IGF2 administration in late pregnancy, i.e., during GD19-GD21, and measured the consequences on fetal organ weight and expression of insulin/IGF-axis components.ResultsIGF2 treatment tended to increase fetal weight, but only weight increase of the fetal stomach reached significance (+33±9%; P<0.01). Sex-dependent data analysis revealed a sexual dimorphism of IGF2 action. In male fetuses, IGF2 administration significantly increased fetal weight (+13±3%; P<0.05) and weight of fetal stomach (+42±10%; P<0.01), intestine (+26±5%; P<0.05), liver (+13±4%; P<0.05), and pancreas (+25±8%; P<0.05). Weights of heart, lungs, and kidneys were unchanged. In female fetuses, IGF2 increased only stomach weight (+26±9%; P<0.05). Furthermore, gene expression of insulin/IGF axis in the heart, lungs, liver, and stomach was more sensitive toward IGF2 treatment in male than in female fetuses.ConclusionData suggest that elevated circulating IGF2 in late pregnancy predominantly stimulates organ growth of the digestive system, and male fetuses are more susceptible toward the IGF2 effects than female fetuses.Fil: White, Verónica. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; ArgentinaFil: Jawerbaum, Alicia Sandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; ArgentinaFil: Mazzucco, María Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; ArgentinaFil: Gauster, Martin. Medizinische Universität Graz; AustriaFil: Desoye, Gernot. Medizinische Universität Graz; AustriaFil: Hiden, Ursula. Medizinische Universität Graz; Austri

    Role of cAMP in the promotion of colorectal cancer cell growth by Prostaglandin E2

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prostaglandin E2 (PGE2), a product of the cyclooxygenase (COX) reaction, stimulates the growth of colonic epithelial cells. It is inferred that the abrogation of prostaglandins' growth-promoting effects as a result of COX inhibition underlies the advantageous effects of non-steroidal anti-inflammatory drugs in colorectal carcinoma (CRC). Despite this appreciation, the underlying molecular mechanisms remain obscure since cell culture studies have yielded discrepant results regarding PGE2's mitogenicity.</p> <p>Methods</p> <p>We have employed several alternative approaches to score cell proliferation and apoptosis of 4 CRC cell lines exposed to PGE2 under various conditions. To investigate the role of cAMP in PGE2's functions, activation of the cAMP pathway was assessed at different levels (changes in cAMP levels and PKA activity) in cells subjected to specific manipulations including the use of specific inhibitors or prostanoid receptor-selective agonists/antagonists.</p> <p>Results</p> <p>Our data document that the dose-response curve to PGE2 is 'bell-shaped', with nano molar concentrations of PGE2 being more mitogenic than micro molar doses. Remarkably, mitogenicity inversely correlates with the ability of PGE2 doses to raise cAMP levels. Consistent with a major role for cAMP, cAMP raising agents and pertussis toxin revert the mitogenic response to PGE2. Accordingly, use of prostanoid receptor-selective agonists argues for the involvement of the EP3 receptor and serum deprivation of HT29 CRC cells specifically raises the levels of Gi-coupled EP3 splice variants.</p> <p>Conclusion</p> <p>The present data indicate that the mitogenic action of low PGE2 doses in CRC cells is mediated via Gi-proteins, most likely through the EP3 receptor subtype, and is superimposed by a second, cAMP-dependent anti-proliferative effect at higher PGE2 doses. We discuss how these findings contribute to rationalize conflictive literature data on the proliferative action of PGE2.</p

    The role of prostaglandin E2 (PGE 2) in toll-like receptor 4 (TLR4)-mediated colitis-associated neoplasia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We have previously found that TLR4-deficient (TLR4-/-) mice demonstrate decreased expression of mucosal PGE <sub>2 </sub>and are protected against colitis-associated neoplasia. However, it is still unclear whether PGE <sub>2 </sub>is the central factor downstream of TLR4 signaling that promotes intestinal tumorigenesis. To further elucidate critical downstream pathways involving TLR4-mediated intestinal tumorigenesis, we examined the effects of exogenously administered PGE <sub>2 </sub>in TLR4-/- mice to see if PGE <sub>2 </sub>bypasses the protection from colitis-associated tumorigenesis.</p> <p>Method</p> <p>Mouse colitis-associated neoplasia was induced by azoxymethane (AOM) injection followed by two cycles of dextran sodium sulfate (DSS) treatment. Two different doses of PGE <sub>2 </sub>(high dose group, 200 μg, n = 8; and low dose group, 100 μg, n = 6) were administered daily during recovery period of colitis by gavage feeding. Another group was given PGE <sub>2 </sub>during DSS treatment (200 μg, n = 5). Inflammation and dysplasia were assessed histologically. Mucosal Cox-2 and amphiregulin (AR) expression, prostanoid synthesis, and EGFR activation were analyzed.</p> <p>Results</p> <p>In control mice treated with PBS, the average number of tumors was greater in WT mice (n = 13) than in TLR4-/- mice (n = 7). High dose but not low dose PGE <sub>2 </sub>treatment caused an increase in epithelial proliferation. 28.6% of PBS-treated TLR4-/- mice developed dysplasia (tumors/animal: 0.4 ± 0.2). By contrast, 75.0% (tumors/animal: 1.5 ± 1.2, P < 0.05) of the high dose group and 33.3% (tumors/animal: 0.3 ± 0.5) of the low dose group developed dysplasia in TLR4-/- mice. Tumor size was also increased by high dose PGE <sub>2 </sub>treatment. Endogenous prostanoid synthesis was differentially affected by PGE <sub>2 </sub>treatment during acute and recovery phases of colitis. Exogenous administration of PGE <sub>2 </sub>increased colitis-associated tumorigenesis but this only occurred during the recovery phase. Lastly, PGE <sub>2 </sub>treatment increased mucosal expression of AR and Cox-2, thus inducing EGFR activation and forming a positive feedback mechanism to amplify mucosal Cox-2.</p> <p>Conclusions</p> <p>These results highlight the importance of PGE <sub>2 </sub>as a central downstream molecule involving TLR4-mediated intestinal tumorigenesis.</p

    Vascular Dysfunction Induced in Offspring by Maternal Dietary Fat Involves Altered Arterial Polyunsaturated Fatty Acid Biosynthesis

    Get PDF
    Nutrition during development affects risk of future cardiovascular disease. Relatively little is known about whether the amount and type of fat in the maternal diet affect vascular function in the offspring. To investigate this, pregnant and lactating rats were fed either 7%(w/w) or 21%(w/w) fat enriched in either18:2n-6, trans fatty acids, saturated fatty acids, or fish oil. Their offspring were fed 4%(w/w) soybean oil from weaning until day 77. Type and amount of maternal dietary fat altered acetylcholine (ACh)-mediated vaso-relaxation in offspring aortae and mesenteric arteries, contingent on sex. Amount, but not type, of maternal dietary fat altered phenylephrine (Pe)-induced vasoconstriction in these arteries. Maternal 21% fat diet decreased 20:4n-6 concentration in offspring aortae. We investigated the role of Δ6 and Δ5 desaturases, showing that their inhibition in aortae and mesenteric arteries reduced vasoconstriction, but not vaso-relaxation, and the synthesis of specific pro-constriction eicosanoids. Removal of the aortic endothelium did not alter the effect of inhibition of Δ6 and Δ5 desaturases on Pe-mediated vasoconstriction. Thus arterial smooth muscle 20:4n-6 biosynthesis de novo appears to be important for Pe-mediated vasoconstriction. Next we studied genes encoding these desaturases, finding that maternal 21% fat reduced Fads2 mRNA expression and increased Fads1 in offspring aortae, indicating dysregulation of 20:4n-6 biosynthesis. Methylation at CpG −394 bp 5′ to the Fads2 transcription start site predicted its expression. This locus was hypermethylated in offspring of dams fed 21% fat. Pe treatment of aortae for 10 minutes increased Fads2, but not Fads1, mRNA expression (76%; P<0.05). This suggests that Fads2 may be an immediate early gene in the response of aortae to Pe. Thus both amount and type of maternal dietary fat induce altered regulation of vascular tone in offspring though differential effects on vaso-relaxation, and persistent changes in vasoconstriction via epigenetic processes controlling arterial polyunsaturated fatty acid biosynthesis

    A review of gene-drug interactions for nonsteroidal anti-inflammatory drug use in preventing colorectal neoplasia.

    Get PDF
    Nonsteroidal anti-inflammatory drugs (NSAIDs) have been shown to be effective chemopreventive agents for colorectal neoplasia. Polymorphisms in NSAID targets or metabolizing enzymes may affect NSAID efficacy or toxicity. We conducted a literature review to summarize current evidence of gene-drug interactions between NSAID use and polymorphisms in COX1, COX2, ODC, UGT1A6 and CYP2C9 on risk of colorectal neoplasia by searching OVID and PubMed. Of 134 relevant search results, thirteen investigated an interaction. One study reported a significant interaction between NSAID use and the COX1 Pro17Leu polymorphism (P=0.03) whereby the risk reduction associated with NSAID use among homozygous wild-type genotypes was not observed among NSAID users with variant alleles. Recent pharmacodynamic data support the potential for gene-drug interactions for COX1 Pro17Leu. Statistically significant interactions have also been reported for ODC (315G>A), UGT1A6 (Thr181Ala+Arg184Ser or Arg184Ser alone), and CYP2C9 (*2/*3). No statistically significant interactions have been reported for polymorphisms in COX2; however, an interaction with COX2 -765G>C approached significance (P=0.07) in one study. Among seven remaining studies, reported interactions were not statistically significant for COX1, COX2 and ODC gene polymorphisms. Most studies were of limited sample size. Definitions of NSAID use differed substantially between studies. The literature on NSAID-gene interactions to date is limited. Reliable detection of gene-NSAID interactions will require greater sample sizes, consistent definitions of NSAID use and evaluation of clinical trial subjects of chemoprevention studies

    TSP-1 Secreted by Bone Marrow Stromal Cells Contributes to Retinal Ganglion Cell Neurite Outgrowth and Survival

    Get PDF
    BACKGROUND: Bone marrow stromal cells (BMSCs) are pluripotent and thereby a potential candidate for cell replacement therapy for central nervous system degenerative disorders and traumatic injury. However, the mechanism of their differentiation and effect on neural tissues has not been fully elucidated. This study evaluates the effect of BMSCs on neural cell growth and survival in a retinal ganglion cell (RGCs) model by assessing the effect of changes in the expression of a BMSC-secreted protein, thrombospondin-1 (TSP-1), as a putative mechanistic agent acting on RGCs. METHODS AND FINDINGS: The effect of co-culturing BMSCs and RGCs in vitro was evaluated by measuring the following parameters: neurite outgrowth, RGC survival, BMSC neural-like differentiation, and the effect of TSP-1 on both cell lines under basal secretion conditions and when TSP-1 expression was inhibited. Our data show that BMSCs improved RGC survival and neurite outgrowth. Synaptophysin, MAP-2, and TGF-beta expression are up-regulated in RGCs co-cultured with BMSCs. Interestingly, the BMSCs progressively displayed neural-like morphology over the seven-day study period. Restriction display polymerase chain reaction (RD-PCR) was performed to screen for differentially expressed genes in BMSCs cultured alone or co-cultured with RGCs. TSP-1, a multifactorial extracellular matrix protein, is critically important in the formation of neural connections during development, so its function in our co-culture model was investigated by small interfering RNA (siRNA) transfection. When TSP-1 expression was decreased with siRNA silencing, BMSCs had no impact on RGC survival, but reduced neurite outgrowth and decreased expression of synaptophysin, MAP-2 and TGF-beta in RGCs. Furthermore, the number of BMSCs with neural-like characteristics was significantly decreased by more than two-fold using siRNA silencing. CONCLUSIONS: Our data suggest that the TSP-1 signaling pathway might have an important role in neural-like differentiation in BMSCs and neurite outgrowth in RGCs. This study provides new insights into the potential reparative mechanisms of neural cell repair
    corecore